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ON STRATIFIED WATER WAVES WITH CRITICAL LAYERS1
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Abstract. We consider nonlinear traveling waves in a two-dimensional fluid
subject to the effects of vorticity, stratification, and in-plane Coriolis forces. We
first observe that the terms representing the Coriolis forces can be completely
eliminated by a change of variables. This does not appear to be well-known,
and helps to organize some of the existing literature.

Second we give a rigorous existence result for periodic waves in a two-layer
system with a free surface and constant densities and vorticities in each layer,
allowing for the presence of critical layers. We augment the problem with four
physically-motivated constraints, and phrase our hypotheses directly in terms
of the explicit dispersion relation for the problem. This approach smooths the
way for further generalizations, some of which we briefly outline at the end of
the paper.
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1. Introduction. This paper concerns traveling waves in a two-dimensional invis-1

cid and incompressible fluid lying above a flat bed. The fluid is divided into one2

or more layers separated by internal interfaces across which the pressure is contin-3

uous, and is bounded above either by a free surface held at constant (atmospheric)4

pressure or else by a rigid lid. While the velocity field is incompressible, the density5

of the fluid is allowed to vary continuously within each layer and discontinuously6

across the internal interfaces. Similarly we allow for nonzero vorticity in each layer7

as well as the existence of closed streamlines. Finally, we allow for Coriolis forces8

perpendicular to the fluid velocity. Such terms appear in non-traditional f -plane9

approximations at the equator [7].10

Our first result (Proposition 2.1 below) is that traveling-wave solutions with11

Coriolis parameter Ω 6= 0 can be naturally associated to solutions with Ω = 012

and conversely. In this sense the two problems are mathematically equivalent,13

even if their physical interpretations are different. We were surprised not to find14

this remarked upon in recent work on waves with Coriolis forces. The basic idea is15

simple: By incompressibility, the Coriolis terms in the momentum equations are a16

gradient and so can be absorbed into the pressure. In general this redefinition of17

the pressure leaves forcing terms on the internal interfaces and free surface, but for18

traveling waves one can arrange for these forcing terms to vanish. The drawback is19

that the gravitational constant g must be replaced by g − 2Ωc where c is the wave20

speed. Branches of solutions with fixed g and variable c are therefore not preserved21

under this transformation.22

Our second result (Theorem 3.1 below) is on the existence of periodic waves. We23

specialize to the two-layer case with a free surface, and require the vorticity and24

density to be constant in each layer. We also enforce four integral constraints which25

ensure that the average depths of the two layers are constant, that the wave speed26

c is physically defined, and that the average strength of the vortex sheet at the27

internal interface is zero. The results are stated entirely in terms of the formal28

dispersion relation d(k, c) = 0 between the wavenumber k and wave speed c of29

an infinitesimal wave. Especially since the linear operators involved are not Fourier30

multipliers, it is not immediately obvious that this should be possible. We state and31

prove a functional-analytic lemma which clarifies the issue and allows our existence32

result to be more easily generalized in a variety of directions.33

1.1. Governing equations. Consider a configuration with N ≥ 1 layers as in34

Figure 1. The layers are numbered 1, . . . , N starting with the deepest layer, while35

the internal interfaces are numbered 0, . . . , N with 0 corresponding to the flat bed36

and N to the free surface or rigid lid. Introducing a “reference thickness” hi > 037

for each layer, the “reference height” of the ith interface is h0 + · · · + hi, and we38

assume that the interface itself is a graph39

Si = {z = h0 + · · ·+ hi + ηi(x, t)} (1.1)40

for some function ηi. On the flat bed η0 ≡ 0. The ith layer is then41

Di = {(x, z) : ηi−1 < z − h0 − · · · − hi−1 < hi + ηi}, (1.2)42

where we are assuming ηi−1 < hi+ηi so that the interfaces do not touch. Each layer43

has a velocity field (ui, wi), pressure field pi, and density field ρi > 0, and we define44

the corresponding vortices by ωi = uiz − wix. We will always work with classical45

solutions having at least the regularity ηi ∈ C1 and ui, wi, pi, ρi ∈ C1(Di ×R). For46

convenience we set u0 = w0 = 0.47
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Figure 1. Fluid configurations with multiple layers using the no-
tation (1.1) and (1.2). (a) A configuration with N = 4 layers and a
rigid lid. (b) A configuration with N = 2 layers and a free surface.
This is the type of configuration which will be considered in Sec-
tion 3.

In each layer Di the incompressible Euler equations1

uit + uiuix + wiuiz + 2Ωwi = −pix/ρi, (1.3a)2

wit + uiwix + wiwiz − 2Ωui = −piz/ρi − g, (1.3b)3

ρit + uiρix + wiρiz = 0, (1.3c)4

uix + wiz = 0 (1.3d)5

hold, where here g is the acceleration due to gravity and Ω is the angular velocity6

responsible for the Coriolis forces. At each interface Si, including the bed S0 and7

free surface SN , there are kinematic boundary conditions8

ηit − wi + ηixui = 0, (1.3e)9

ηit − wi+1 + ηixui+1 = 0, (1.3f)10

except that on SN we have only (1.3e) and not (1.3f). These boundary conditions11

guarantee that fluid particles on Si remain there for all time. The pressure is12

continuous across each internal interface,13

pi = pi+1 on Si, i = 1, . . . , N − 1. (1.3g)14

If the upper boundary SN is a free surface then we have15

pN = patm (1.3h)16

there for some constant atmospheric pressure patm. If SN is instead a rigid lid then17

we simply have18

ηN = 0. (1.3i)19

By a traveling wave we mean a solution of (1.3) where the dependent variables20

ui, wi, ρi, pi, ηi depend on x and t only through the combination x−ct for some wave21

speed c ∈ R. Inserting this ansatz into (1.3), we are left with the time-independent22
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problem1

(ui − c)uix + wiuiz + 2Ωwi = −pix/ρi in Di, i = 1, . . . , N, (1.4a)2

(ui − c)wix + wiwiz − 2Ωui = −piz/ρi − g in Di, i = 1, . . . , N, (1.4b)3

(ui − c)ρix + wiρiz = 0 in Di, i = 1, . . . , N, (1.4c)4

uix + wiz = 0 in Di, i = 1, . . . , N, (1.4d)5

wi − ηix(ui − c) = 0 on Si, i = 0, . . . , N, (1.4e)6

wi+1 − ηix(ui+1 − c) = 0 on Si, i = 0, . . . , N, (1.4f)7

pi = pi+1 on Si, i = 1, . . . , N − 1, (1.4g)8

pN = patm on SN , (free surface case), (1.4h)9

ηN = 0 on SN , (rigid lid case). (1.4i)10

1.2. Previous results.11

1.2.1. Without Coriolis forces. There is an extensive literature on solutions to12

(1.4) in the absence of Coriolis forces, even when we leave out important work13

on traveling-wave solutions to approximate models, on three-dimensional waves,14

and on the full time-dependent problem. We refer the reader to the surveys [15, 16,15

32, 36, 37] and monograph [8] for a general overview. In terms of existence results16

for periodic waves, the simplest case of a single irrotational layer with a free surface17

dates back to Nekrasov [33] and Levi-Civita [28] in the 1920’s. By comparison, the18

small-amplitude existence theory for waves with critical layers is not even a decade19

old [38] and the large-amplitude theory is quite recent [10].20

Two-layer waves with vorticity and a rigid lid were constructed by Walsh, Bühler,21

and Shatah [40]. Like earlier work [11] with a single layer, they assume u < c22

throughout the fluid which rules out the existence of critical layers. Matioc [30]23

has subsequently given an existence theory without this assumption. Compared24

to [40, 30], our existence result Theorem 3.1 treats the more complicated free-25

surface boundary condition. This introduces an additional unknown η2 into the26

problem, and the dispersion relation (3.1) (for piecewise-constant vorticity) becomes27

quartic in the wave speed rather than quadratic. Perhaps more importantly, the28

dispersion relation loses monotonicity in the wavenumber k, so that there can be29

resonances between different wavenumbers k1, k2 for fixed c. On the other hand,30

while [40, 30] allow for general distributions of vorticity, we restrict to piecewise-31

constant vorticity. Our approach is not fundamentally restricted to this choice,32

however; see the remarks in Section 4.3.33

We also mention a recent result of Wang [41], which treats rotational waves34

with general vorticity and a free surface boundary condition, but does not allow35

for critical layers. This paper constructs not only periodic waves but also waves36

which are solitary (localized) and “generalized solitary” (asymptotically periodic).37

Unlike [40, 30] which use the Crandall–Rabinowitz theorem [13] on bifurcation from38

a simple eigenvalue, Wang uses spatial dynamics techniques, in particular a center39

manifold theorem due to Mielke [31].40

Our emphasis on the dispersion relation is similar in spirit to the work of Kozlov41

and Kuznetsov in [26] (also see [25]). They consider quite general rotational waves42

in a single constant-density layer, and treat two bifurcation problems: one where43

the Bernoulli constant is held fixed and the wavenumber k is varied, and another44

where the wavenumber k is fixed and the Bernoulli constant is varied. Our use of45
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integral constraints is related to earlier work of Henry [18, 17] on constant-density1

rotational waves with constant depth and Walsh [39] on continuously stratified2

waves.3

1.2.2. With Coriolis forces. Results on solutions of (1.4) with Ω 6= 0 are fewer in4

number and comparatively recent. There has been work on explicit Gerstner-type5

solutions in Lagrangian coordinates [19, 22] as well as the existence of solutions via6

bifurcation theory [9, 29, 20]. There are also qualitative results on symmetry [21, 1]7

and particle trajectories [34, 24]. Several papers on Hamiltonian formulations of8

the time-dependent problem [4, 6, 5, 23] also include (rather formal) discussions of9

solitary traveling waves.10

As we will show in Proposition 2.1 below, one can in fact always set Ω = 0 in11

(1.4) after a simple change of variables. Thus the full strength of the classical theory12

for waves without Coriolis forces applies at once. In particular, some of the results13

for Ω 6= 0 mentioned in the above paragraph can be directly inferred from earlier14

work with Ω = 0.15

1.3. Plan of the paper. In Section 2, we state and prove Proposition 2.1 on the16

equivalence between traveling waves with Ω 6= 0 and Ω = 0. For completeness17

we also briefly discuss a similar transformation for time-dependent waves which18

appears to be less useful. In Section 3, we prove our existence result Theorem 3.1.19

In Section 3.1, the full problem (1.4) is reduced to an abstract nonlinear equation20

in Banach spaces and the Crandall–Rabinowitz theorem is stated. In Section 3.2,21

we calculate the Fredholm indices of the relevant linear operators using standard22

techniques for elliptic problems. In Section 3.3, we give an abstract lemma which is23

useful for proving the remaining hypotheses of the Crandall–Rabinowitz theorem.24

In Section 3.4, we apply the lemma to complete the proof of Theorem 3.1. Finally,25

in Section 4 we consider several variants of Theorem 3.1, including a result where26

the wavenumber k is the bifurcation parameter. We have endeavored to write the27

paper in such a way that these variants and other generalizations are easily proved.28

2. Eliminating the Coriolis parameter.29

2.1. Traveling waves. In this section we show how the Coriolis terms involving30

Ω in the traveling-wave system (1.4) can be eliminated. The change of variables31

involves the “pseudo-stream functions” Ψi defined up to additive constants by32

Ψix = −ρiwi, Ψiz = ρi(ui − c). (2.1)33

The existence of the Ψi follows immediately from the identity34

(ρi(ui − c))x − (−ρiwi)z = −ρi(wiz + uix)− (wiρiz + (ui − c)ρix) = 0,35

which holds thanks to (1.4c) and (1.4d). The kinematic conditions (1.4e) and (1.4f)36

imply that Ψi is constant on Si and Si+1. Thus we can add constants to each of37

the Ψi to ensure that the normalization conditions38

Ψi = Ψi+1 on Si, i = 1, . . . , N − 1,

ΨN = 0 on SN
(2.2)39

are satisfied.40
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Proposition 2.1 (Eliminating Ω). The traveling-wave equations (1.4) are preserved1

under the transformation2

pi 7→ p′i = pi − 2ΩΨi, g 7→ g′ = g − 2Ωc, Ω 7→ Ω′ = 0 (2.3)3

where here Ψi = Ψ′
i are defined by (2.1)–(2.2).4

Proof. Subtracting the right hand side of (1.4a) from the left hand side, the terms5

involving p, g,Ω are6

pix/ρi + 2Ωwi = (p′i + 2ΩΨi)x/ρi + 2Ωwi = p′ix/ρi + 2Ω′wi.7

Similarly, when we subtract the right hand side from the left hand side (1.4b), the8

relevant terms are9

piz/ρi + g − 2Ωui = (p′i + 2ΩΨi)z/ρi + (g′ + 2Ωc)− 2Ωui10

= p′iz/ρi + 2Ω(ui − c) + g′ − 2Ωc− 2Ωui11

= p′iz/ρi + g′ − 2Ω′ui.12

Since the equations (1.4c)–(1.4f) do not involve p, g,Ω, they are obviously preserved,13

and finally the dynamic boundary conditions (1.4g) are preserved thanks to the14

normalization (2.2).15

Remark 2.2. Proposition 2.1 continues to hold, with the same proof, when surface16

tension effects are included and also when (1.4) is generalized to allow for interfaces17

Si that are not graphs.18

Note that the transformation (2.3) leaves everything but the pressures pi, grav-19

itational constant g, and Coriolis parameter Ω unchanged. Thus the interfaces Si,20

(pseudo-) stream functions such as Ψi, the trajectories of fluid particles, and the21

vorticities ωi are all preserved.22

2.2. Time-dependent waves. There does not appear to be an analogue of the23

transformation (2.3) which completely eliminates the Coriolis terms from (1.3).24

Under additional assumptions, one can, however, eliminate the Coriolis terms from25

the momentum equations (1.3a)–(1.3b) at the cost of adding forcing terms to the26

dynamic boundary conditions (1.3g) and (1.3h). While it is unclear if there are any27

applications, we outline such a transformation here for completeness.28

Suppose, for instance, that the densities ρi are constant in each layer. Then29

by (1.3d) there exist stream functions Ψi in each layer satisfying Ψix = −ρiwi,30

Ψiz = ρiui and unique up to an additive function of time t alone. The kinematic31

boundary conditions (1.3e)–(1.3f) imply that32

1

ρi

d

dx
(Ψi|Si

) = −wi + uiηi,x = −ηi,t =
1

ρi+1

d

dx
(Ψi+1|Si

)33

on Si for i = 1, . . . , N − 1, and so we can normalize the Ψi so that34

Ψi = Ci(t)− ρi

∫ x

0

ηit(x̃, t) dx̃, Ψi+1 = Ci(t)− ρi+1

∫ x

0

ηit(x̃, t) dx̃35

on Si for some functions Ci(t). On the top SN we can similarly arrange for36

ΨN = ρN

∫ x

0

ηN,t(x̃) dx̃.37

With these normalizations in place, consider the transformation38

pi 7→ p′i = pi − 2ΩΨi, g 7→ g′ = g, Ω 7→ Ω′ = 0,39
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where we are including g 7→ g merely to emphasize the difference with (2.3). As in1

the proof of Proposition 2.1, the momentum equations (1.3a)–(1.3b) are unchanged,2

as are (1.3d)–(1.3f). On the other hand, the boundary condition (1.3g) becomes3

p′i = p′i+1 + 2Ω(ρi − ρi+1)

∫ x

0

ηit(x̃, t)dx̃ on Si.4

For a rigid lid (1.3i) is unchanged, while the free surface boundary condition (1.3h)5

becomes6

p′N = patm + 2ΩρN

∫ x

0

ηNt(x̃, t) dx̃.7

3. Existence theory. This section is devoted to an existence result for (1.4). We8

take N = 2 layers with a free surface condition (see Figure 1b), and seek periodic9

waves with a fixed horizontal wave number k = κ. Abusing notation, we henceforth10

identify the interfaces S0, S1, S2 and fluid layers D1, D2 with their intersections with11

a fundamental period {|x| < −π/κ}. We assume that the vorticities ω1, ω2 and12

densities ρ1, ρ2 in each layer are constants, and define the dimensionless ratio13

r =
ρ1 − ρ2
ρ2

> 0.14

In light of Proposition 2.1 we set Ω = 0 for simplicity, but see the discussion in15

Section 4.1. Introducing the shorthand16

ci = c− ω1h1 = “relative wave speed at the interface”,17

cs = c− ω1h1 − ω2h2 = “relative wave speed at the surface”,18

the dispersion relation for this problem is then d(k, c) = 0 where19

d(k, c) =
[(
c2i k

(
(1 + r) coth kh1 + coth kh2

)
+ ci((1 + r)ω1 − ω2)− gr

)
×(

c2sk coth kh2 + csω2 − g
)]

−
(
cscik csch kh2

)2

.
(3.1)20

The formula (3.1) can of course be formally derived in many ways; it enters into21

our arguments in Section 3.4 as the determinant of a certain 6× 6 matrix.22

Theorem 3.1 (Existence of periodic waves). Fix κ, h1, h2, r, ω1, ω2, g and set Ω = 0.23

Suppose that at some speed c∗ we have24

(i) (Simple root) d(κ, c∗) = 0 and dc(κ, c∗) 6= 0;25

(ii) (Non-resonance) d(`κ, c∗) 6= 0 for ` 6= ±1, 0; and26

(iii) (Non-critical surface and interface) c∗ 6= ω1h2, ω1h1 + ω2h2.27

Then there is an analytic curve of solutions to (1.4), parametrized by a small28

parameter ε, with the following properties.29

(a) (Asymptotics) As ε→ 0, we have the expansions30

η1 = ε cos(κx) +O(ε2),

η2 = −ε csciκ cschκh2
c2sκ cothκh2 + csω2 − g

cos(κx) +O(ε2),

c = c∗ +O(ε2).

(3.2)31

(b) (Average depths) The layers have average depths h1, h2 in that32 ∫
S1

η1 dx =

∫
S2

η2 dx = 0. (3.3)33
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(c) (Consistently-defined wave speed) The wave speed c is uniquely determined by1

the requirement2 ∫
S0

u1 dx = 0. (3.4)3

(d) (Average vortex-sheet strength zero) The net strength of the vortex sheet S14

is zero in the sense that5 ∫
S1

((u1, w1)− (u2, w2)) · (1, η1x) dx = 0. (3.5)6

Before beginning the proof, let us comment on the integral conditions (3.3)–(3.5).7

While the constant depth condition (3.3) is certainly natural, many authors instead8

fix the volume fluxes M1,M2 defined in (3.8) below. This choice is not unreasonable9

from a physical point of view, and has some mathematical advantages. For further10

discussion we refer the reader to [18, 17]. Condition (2.3) is a normalization for the11

wave speed c, sometimes called “Stokes’ first definition of the wave speed”. It asserts12

that we are working in the unique reference frame where the horizontal velocity at13

the bed has average value zero. Many authors, for instance [11], instead fix c and14

use a Bernoulli constant such as B2 in (3.6) below as the bifurcation parameter.15

Condition (3.5) at the internal interface is similar; it asserts that the average jump16

in tangential velocity is zero. This can be interpreted, for instance, as an effort to at17

least reduce the strength of the Kelvin–Helmholtz instability. An alternative would18

be to instead fix another Bernoulli constant, say B1 in (3.6) below.19

3.1. Formulation.20

3.1.1. Stream function formulation. As in Section 2, we use incompressibility to21

introduce stream functions in each layer, except that we drop the prefactor ρi:22

Ψ1x = −w1, Ψ1z = u1 − c, Ψ2x = −w2, Ψ2z = u2 − c.23

Using Bernoulli’s law to eliminate the pressure, standard arguments lead to the24

following system:25

∆Ψ1 = ω1 in D1, (3.6a)26

∆Ψ2 = ω2 in D2, (3.6b)27

Ψ1 =M1 on S0, (3.6c)28

Ψ1 = 0 on S1, (3.6d)29

Ψ2 = 0 on S1, (3.6e)30

Ψ2 = −M2 on S2, (3.6f)31

1
2 |∇Ψ2|2 − (1 + r) 12 |∇Ψ1|2 + grη1 = B1 on S1, (3.6g)32

1
2 |∇Ψ2|2 + gη2 = B2 on S2, (3.6h)33

with the constraints (3.3)–(3.5) becoming34 ∫
S1

η1 dx =

∫
S2

η2 dx = 0, (3.7a)35 ∫
S0

(Ψ1ζ + c) dx = 0, (3.7b)36 ∫
S1

(∇Ψ1 −∇Ψ2) · (1, η1x) dx = 0. (3.7c)37
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Figure 2. Shear flows U(z) corresponding to the stream functions
Ψ1,Ψ2 in (3.9). Both flows have ω2 < 0 < ω1 and c > 0. (a) A
flow with a critical layer at the marked point in D1 where U1 = c.
(b) A flow without a critical layer.

Here B1, B2 are Bernoulli constants, while M1,M2 are the x-independent volume1

fluxes in each layer,2

M1 = −
∫ η1

−h1

(u1 − c) dz, M2 = −
∫ h2+η2

η1

(u2 − c) dz. (3.8)3

Throughout the analysis we will hold ω1, ω2, r, h1, h2, κ fixed, but allow M1, M2,4

B1, B2 and c to vary with the solution, c playing the role of bifurcation parameter.5

See Section 4 for related results with difference choices of parameters and constants.6

3.1.2. Trivial solutions. We will perturb from the family of trivial (i.e. x-independent)7

solutions with η1, η2 ≡ 0 and8

Ψ1 = Ψ1(z; c) := (ω1h1 − c)z + ω1
z2

2
,

Ψ2 = Ψ2(z; c) := (ω1h1 − c)z + ω2
z2

2
.

(3.9)9

These correspond to continuous piecewise-linear shear flows with horizontal ve-10

locity U i = Ψiz + c; see Figure 2. Inserting into (3.6) we discover formulas for11

M1,M2, B1, B212

M1 =M1(c), M2 =M2(c), B1 = B1(c), B2 = B2(c),13

while the integral constraints (3.7) are all satisfied. Observe that, depending on the14

values of the various parameters, the associated relative velocities ui− c = Ψiz may15

vanish at isolated values of z. These are “critical layers” where the flow reverses16

direction.17

We write a general solution as a perturbation of the trivial solution, using low-18

ercase letters for the perturbation variables:19

Ψ1 =: Ψ1 + ψ1, M1 =:M1 +m1, B1 =: B1 + b1,

Ψ2 =: Ψ2 + ψ2, M2 =:M2 +m2. B2 =: B2 + b2.
(3.10)20
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3.1.3. Flattening transformations. In the absence of the critical layers mentioned1

above, we could make a semi-Lagrangian change of variables originally due to2

Dubreil-Jacotin [14], using z as the dependent variable and Ψi as the independent3

variable. Indeed this transformation was used by Wang [41] for (a generalization4

of) our problem. Since we want to allow for critical layers, however, we are forced5

to use a less elegant change of coordinates, and we instead define the new vertical6

variable ζ by7

ζ :=


−h1 +

h1
h1 + η1

(h1 + z) if −h1 ≤ z ≤ η,

h2
h2 + η2 − η1

(z − η1) if η1 ≤ z ≤ h2 + η2.
8

The change of variables (x, y) 7→ (x, ζ) maps the lower and upper fluid layers D1, D29

onto the periodic strips10

Ω1 = Tκ × (−h1, 0), Ω2 = Tκ × (0, h2), (3.11a)11

where Tκ denotes the interval [−π/κ, π/κ] with periodic boundary conditions. Sim-12

ilarly S0, S1, S2 are sent to13

Γ0 = Tκ × {ζ = −h1}, Γ1 = Tκ × {ζ = 0}, Γ2 = Tκ × {ζ = h2}. (3.11b)14

This change of variables is well-defined and piecewise smooth provided the inequal-15

ities16

−h1 < η1 < h2 + η2 (3.12)17

hold so that the interface and free surface do not touch each other or the bed. Since18

we will be considering solutions where η1, η2 are small in C2+α, (3.12) will always19

hold.20

For the remainder of the paper we will abuse notation and consider ψ1, ψ2 as21

functions of (x, ζ) rather than as functions of (x, z).22

3.1.4. Linearization. Using the definitions in the previous two sections to change23

variables in (3.6)–(3.7) is tedious but straightforward, and we omit the calculations.24

Under the ever-present assumption (3.12), one obtains a system of equations for the25

unknown functions26

Φ = (ψ1, ψ2, η1, η2)27

on the fixed domains Ω1,Ω2 and their boundaries Γ0,Γ1,Γ2. The traveling-wave28

system (3.6) becomes29

∆ψ1 = N1(ζ,Φ, DΦ, D2Φ; c) in Ω1, (3.13a)30

∆ψ2 = N2(ζ,Φ, DΦ, D2Φ; c) in Ω2, (3.13b)31

ψ1 −m1 = 0 on Γ0, (3.13c)32

ψ1 − ciη1 = N4(Φ; c) on Γ1, (3.13d)33

ψ2 − ciη1 = N5(Φ; c) on Γ1, (3.13e)34

ψ2 − csη2 −m2 = N6(Φ; c) on Γ2, (3.13f)35

−ciψ2ζ + c̃iψ1ζ + βiη1 − b1 = N7(Φ, DΦ; c) on Γ1, (3.13g)36

−csψ2ζ + βsη2 − b2 = N8(Φ, DΦ; c) on Γ2, (3.13h)37
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while the constraints (3.7) become1 ∫
η1 dx = 0, (3.14a)2 ∫
η2 dx = 0, (3.14b)3 ∫

Γ0

ψ1ζ dx =

∫
Γ0

N11(Φ, DΦ; c) dx, (3.14c)4 ∫
Γ1

(ψ1ζ − ψ2ζ) dx =

∫
Γ1

N12(Φ, DΦ; c) dx. (3.14d)5

The functions Ni appearing on the right hand sides are each rational functions of6

their arguments and are well-defined and analytic in the region where (3.12) holds.7

They are genuinely nonlinear in that8

∂Ni

∂Φj
=

∂Ni

∂(DkΦj)
=

∂Ni

∂(Dk`Φj)
= 0 whenever (Φ, DΦ, D2Φ) = 0.9

This much about the Nj can be deduced without writing them out explicitly; indeed10

the precise formulas will not be needed in this paper at all and so we omit them.11

The values of c-dependent coefficients on the left hand side of (3.13), on the other12

hand, are crucial:13

ci = c− ω1h1 = relative speed at the interface,
cs = c− ω1h1 − ω2h2 = relative wave speed at the surface,
c̃i = (1 + r)ci,

βi = cs((1 + r)ω1 − ω2)− gr = −gr +Ψ2zΨ2zz(0)− (1 + r)Ψ1zΨ1zz(0),

βs = g − ω2cs = g +Ψ2zΨ2zz(h2).

(3.15)14

Note that the coefficients βs, βi multiply the terms with the fewest derivatives in15

their respective equations, while cs, ci, c̃i multiply the highest order terms. Thus we16

expect qualitative properties such as Fredholm indices to be essentially independent17

of βs, βi. In the (at least formal) limit of a single homogeneous and irrotational18

layer, cs = ci = c̃i = c and βs = −βi = g.19

3.1.5. Abstract formulation and the Crandall–Rabinowitz theorem. Fixing once and20

for all a Hölder parameter α ∈ (0, 1), we work with the Banach spaces21

X = C2+α
even(Ω1)× C2+α

even(Ω2)× C2+α
even(Γ1)× C2+α

even(Γ2)× R4,

Y = V × Z,

V = Cα
even(Ω1)× Cα

even(Ω2),

Z = C2+α
even(Γ0)× [C2+α

even(Γ1)]
2 × C2+α

even(Γ2)× C1+α
even(Γ1)× C1+α

even(Γ2)× R4.

(3.16)22

Here the subscript ‘even’ denotes evenness in the horizontal variable x; 2π/κ-23

periodicity is already encoded in (3.11). We write elements of X as24

U = (Φ;Λ) = (ψ1, ψ2, η1, η2; b1, b2,m1,m2)25

and elements of Y as26

f = (f1, f2, . . . , f12).27
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As mentioned in the previous subsection, the system (3.13) is only well-defined1

when the inequalities (3.12) hold. For this reason we will restrict our attention to2

the open subset3

O = {U ∈ X : −h1 < η1 < h2 + η2} ⊂ X,4

which contains the axis {Φ = 0}. We can then write (3.13)–(3.14) abstractly as5

L(c)U = N (U ; c), (3.17)6

where7

L(c) : X → Y8

is a bounded linear operator depending analytically on c and9

N : O × R → Y10

is an analytic mapping between (open subsets of) Banach spaces. One can readily11

check that L(c) and N preserve evenness and periodicity, at which point the above12

boundedness and analyticity are clear.13

We will prove Theorem 3.1 by applying the following analytic version of the14

classical Crandall–Rabinowitz theorem [13].15

Theorem 3.2 (Theorem 8.3.1 in [2]). Let L (λ) : X → Y be a bounded linear16

operator between Banach spaces depending analytically on a parameter λ ∈ R,17

and let N : U → Y be an analytic mapping defined on an open neighborhood18

U of (0, λ0) in X × R which is genuinely nonlinear in that N (0, λ) = 0 and19

Nx(0, λ) = 0 for all λ. If20

(i) L (λ0) is Fredholm with index zero;21

(ii) kerL (λ0) is one-dimensional, spanned by some ξ ∈ X ; and22

(iii) (transversality) Lλ(λ0)ξ /∈ ranL (λ0),23

then (0, λ0) is a bifurcation point in the following sense. There exists ε0 > 0 and a24

pair of analytic functions (x̃, λ̃) : (−ε0, ε0) → U such that25

(a) L (λ̃(ε))x̃(ε) = N (x̃(ε), λ̃(ε)) for ε ∈ (−ε0, ε0);26

(b) x̃(0) = 0, λ̃(0) = λ0, and x̃′(0) = ξ; and27

(c) there exists an open neighborhood V ⊂ U of (0, λ0) such that28 {
(x, λ) ∈ V : L (λ)x = N (λ, x), x 6= 0

}
=

{
(x̃(ε), λ̃(ε)) : 0 < |ε| < ε0

}
.29

3.2. Fredholm index 0. In this section we give sufficient conditions for the linear30

operator L(c) in Section 3.1.5 to be Fredholm with index 0. Since we are treating31

an elliptic problem in a bounded domain, it is unsurprising that the index depends32

only on the inequalities33

cs 6= 0, cic̃i > 0 (3.18)34

and not on the lower-order coefficients βs, βi. For solitary wave problems the situ-35

ation is far more delicate; see for instance [3]. It is useful to split X = X̃ ×R4 and36

Y = Ỹ × R4 so that we can decompose L as the matrix operator37

L =:

(
T S
R 0

)
: X̃ × R4 → Ỹ × R4. (3.19)38

The genuinely infinite-dimensional part of the operator is then isolated in the upper-39

left entry T .40
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Lemma 3.3 (Invertibility). Suppose the inequalities (3.18) hold and moreover that1

βs = βi = 0. Then T : X̃ → Ỹ is invertible.2

Proof. Writing out the component equations of TΦ = f , we have3

∆ψ1 = f1 in Ω1, (3.20a)4

∆ψ2 = f2 in Ω2, (3.20b)5

ψ1 = f3 on Γ0, (3.20c)6

ψ1 − ciη1 = f4 on Γ1, (3.20d)7

ψ2 − ciη1 = f5 on Γ1, (3.20e)8

ψ2 − csη2 = f6 on Γ2, (3.20f)9

−ciψ2ζ + c̃iψ1ζ = f7 on Γ1, (3.20g)10

−csψ2ζ = f8 on Γ2. (3.20h)11

Subtracting (3.20e) and (3.20d), we obtain a transmission problem for (ψ1, ψ2)12

alone:13

∆ψ1 = f1 in Ω1,

∆ψ2 = f2 in Ω2,

ψ1 = f3 on Γ0,

ψ2 − ψ1 = f5 − f4 on Γ1,

−ciψ2ζ + c̃iψ1ζ = f7 on Γ1,

−csψ2ζ = f8 on Γ2.

(3.21)14

Thanks to the sign conditions (3.18), (3.21) can be solved uniquely for Ψ1,Ψ2, with15

the Schauder estimate [27]16

‖ψ1‖C2+α + ‖ψ2‖C2+α ≤ C‖f‖Y , (3.22)17

where here and in what follows the constant C depends only on cs, ci, c̃i but can18

change from line to line. We can then uniquely solve (3.20d)–(3.20e) for η1, η2, with19

the obvious estimate20

‖η1‖C2+α + ‖η2‖C2+α ≤ C(‖ψ1‖C2+α + ‖ψ2‖C2+α + ‖f‖Y ). (3.23)21

Combining (3.22) and (3.23) leads at once to the Schauder estimate ‖Φ‖Y ≤ C‖f‖Y .22

23

Corollary 3.4 (Fredholm index 0). If the inequalities (3.18) hold then T : X → Y24

and L : X → Y are Fredholm with index 0.25

Proof. Writing the dependence on βs, βi explicitly, we can decompose T as26

T = T0 + βsT1 + βiT2.27

The first term T0 is invertible by Lemma 3.3. Since T1, T2 are compact, we deduce28

that T is Fredholm with index 0. Since the factors of R4 have the same dimension29

in X = X̃ × R4 and Y = Ỹ × R, the full operator L is then also Fredholm with30

index zero by the Fredholm bordering lemma [35].31
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3.3. An abstract lemma. While the Fredholm index of L(c) only depends on the1

structural inequalities (3.18), the remaining hypotheses in the Crandall–Rabinowitz2

theorem 3.2 require more detailed information. If L(c) were a Fourier multiplier3

acting on a single function of a single variable, the way forward would be clear,4

and indeed [30, 26] are able reformulate their nonlinear problems so that this is5

the case. Rather than pursue similar reductions here (but now to vector-valued6

functions of a single variable), we treat the original operator L(c) directly, using7

the abstract lemma below as our primary tool.8

The general setting is the following. We have a family of operators L(t) : X → Y9

which we cannot easily express in terms of operators on finite-dimensional spaces10

(i.e., we can Fourier transform in x, but we are still left with inhomogeneous ODEs11

in ζ). This problem disappears, however, if we suitably restrict the domain and12

range of L(t) by considering a composition ΠV L(t)E(t) : W → Z (i.e., if we set13

the inhomogeneous terms in the ODEs to zero and express everything in terms14

of boundary data). The question is then what we can conclude about the full15

operators L(t) by studying the simpler operators ΠV L(t)E(t).16

More precisely, suppose we have smooth families of bounded linear operators17

L(t) and E(t) between Banach spaces that fit into the following diagram:18

W
E(t)−−−→ X

L(t)−−−→ Y = V × Z.19

Letting ΠZ ,ΠV be the projections of Y onto its factors, we require20

ranE = kerΠV L, kerE = {0}. (3.24)21

Moreover we suppose that for each ` ∈ N there are t-independent projections P`, Q`22

and isomorphisms I`, J` such that23

W
P`−→ P`W

I`−→ Rn` , Z
Q`−−→ Q`Z

J`−→ Rn`24

for some finite dimension n` depending only on `, and that these projections diag-25

onalize ΠZLE in that26

∞∑
`=0

P`w = w,

∞∑
`=0

Q`z = z (3.25a)27

for each fixed w ∈W and z ∈ Z, and28

QjΠZLEP` = 0, QjQ` = 0, PjP` = 0 for j 6= `. (3.25b)29

The following result says that certain properties of L(t) can sometimes be inferred30

from related properties of the n` × n` matrices31

M`(t) = J`Q`ΠZL(t)E(t)I−1
` . (3.26)32

Lemma 3.5. Suppose that for some `∗ and t∗ the following hold:33

(i) kerM`∗(t∗) = span{µ} is one-dimensional;34

(ii) M`(t∗) is invertible for ` 6= `∗; and35

(iii) d

dt

∣∣∣
t=t∗

detM`∗(t) 6= 0.36

Then37

(a) kerL(t∗) = span{ξ} where ξ = EI−1
`∗ µ; and38

(b) L′(t∗)ξ /∈ ranL(t∗).39
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Note that we are neither assuming nor proving that L(t∗) is Fredholm with index1

0. Also, while (i)–(ii) are more or less equivalent to (a), we do not in general expect2

(b) to imply (iii).3

Condition (iii) in Lemma 3.5 comes from the following finite-dimensional lemma.4

Lemma 3.6 (Transverality in finite dimensions). Let M,M ′ be complex n × n5

matrices and assume that kerM = span{µ} is one-dimensional. Then M ′µ ∈ ranM6

if and only if7

d

dt

∣∣∣∣
t=0

det(M + tM ′) = 0. (3.27)8

Proof. Without loss of generality we can assume that M is in Jordan normal form,9

i.e. that10

M =

(
A 0
0 J

)
,11

where A is an invertible `×` matrix and J is a (n−`)×(n−`) Jordan block with 0’s12

down the diagonal. Then kerM is spanned by µ = e`+1 while ranM = span{en}⊥,13

and so M ′µ ∈ ranM if and only if14

en · (M ′e`+1) =M ′
n,`+1 = 0. (3.28)15

Expanding the determinant we find16

det(M + tM ′) = det

((
A 0
0 J

)
+ tM ′

)
= tdet(A)M ′

`+1,n +O(t2).17

Comparing with (3.28) we see that M ′µ ∈ ranM is equivalent to (3.27) as desired.18

19

Proof of Lemma 3.5. First we show (a). Since t = t∗ throughout, we suppress20

dependence on it. The assumption ΠV LE = 0 gives at once that ΠV Lξ = 0, and21

hence Lξ = 0 follows from the calculation22

ΠZLξ =
∑
j

QjΠZLEP`∗I
−1
`∗
µ = Q`∗ΠZLEP`∗I

−1
`∗
µ = J−1

`∗
M`∗µ = 023

in which we have used (3.25) and (i). Conversely, suppose that x ∈ kerL. Then24

(3.24) implies x = Ew for some w ∈W . By (3.25a) we can then write25

x = Ew =
∑
`

EP`w,26

so that applying (3.25a) again and using (3.25b) yields27

0 = ΠV LEw =
∑
`

∑
m

Q`ΠV LEPmw =
∑
`

Q`(ΠV LEP`w).28

By (3.25b) each term in this sum must vanish,29

M`(I`P`w) = 0 for all `.30

Our assumption (ii) therefore implies P`w = 0 for ` 6= `∗, while (i) gives I`∗P`∗w ∈31

span{µ}. This in turn implies x = EI−1
`∗ w ∈ span{ξ} as desired.32

It remains to show (b). Again L,E,L′, E′ will always be evaluated at t = t∗,33

and so we suppress this dependence for readability. Suppose that x ∈ X solves34

Lx = L′ξ. We must show that (iii) does not hold. Setting ω = I−1
`∗
µ, we calculate35

L(x+ E′ω) = L′Eω + LE′ω = (LE)′ω. (3.29)36
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Differentiating the assumption ΠV LE = 0, we find that ΠV (LE)′ = 0. Applying1

ΠV to (3.29) therefore yields x+ E′ω ∈ kerΠV L = ranE. Thus we can write2

x+ E′ω = Ew3

for some w ∈W . We now apply J`∗Q`∗ΠZ to both sides of (3.29) and compare the4

results. On the left hand side (3.25) implies5

J`∗Q`∗ΠZL(x+ E′ω) = J`∗Q`∗ΠZLEw

= J`∗Q`∗ΠZLEP`∗w

=M`∗(I`∗P`∗w) ∈ ranM`∗ ,

(3.30)6

while on the right hand side we get7

J`∗Q`∗ΠZ(LE)′ω = J`∗Q`∗ΠZ(LE)′I−1
`∗
µ =M ′

`∗µ. (3.31)8

Combining (3.29)–(3.31) yields M ′
`∗
µ ∈ ranM`∗ . Applying Lemma 3.6 with M =9

M`∗ and M ′ =M ′
`∗

, we conclude that (iii) does not hold, and the proof is complete.10

11

3.4. Application of the lemma. We now apply Lemma 3.5 to the linear operator12

L(c) : X → Y appearing in our problem. We decompose Y = V × Z exactly as in13

(3.16), and set14

W =
(
C2+α

even(Γ0)× [C2+α(Γ1)]
2 × C2+α(Γ2)

)
×
(
C2+α(Γ0)× C2+α(Γ1)

)
× R4,15

where the first four factors will represent the boundary values of the functions ψ1, ψ216

ordered from bottom to top, i.e. t1 = ψ1|Γ0 , t2 = ψ1|Γ1 , t3 = ψ2|Γ1 , t4 = ψ2|Γ2 .17

Writing elements of W as18

w = (t1, t2, t3, t4, η1, η2, b1, b2,m1,m2),19

our mapping E : W → X is independent of c and defined by20

Ew = (ψ1, ψ2, η1, η2, b1, b2,m1,m2)21

where ψ1, ψ2 are the unique solutions of the Dirichlet problems22 
∆ψ1 = 0 in Ω1,

ψ1 = t1 on Γ0,

ψ1 = t2 on Γ1,


∆ψ2 = 0 in Ω2,

ψ2 = t3 on Γ1,

ψ2 = t4 on Γ2.

23

The boundedness and injectivity of E follows from standard elliptic theory. More-24

over kerΠV L = ranE by construction and so (3.24) holds.25

The projections P`, Q` and isomorphisms I`, J` are defined in terms of Fourier26

coefficients, where ` ∈ N corresponds to a wavenumber k = `κ. Adopting the27

convention28

F`f :=


κ

π

∫ π/κ

−π/κ

f(x) cos(`κx) dx ` = 1, 2, 3, . . . ,

κ

2π

∫ π/κ

−π/κ

f(x) dx ` = 0,

(3.32)29

we abuse notation slightly and set30

P` = cos(`κx)F`, Q` = cos(`κx)F`. (3.33)31

The hypotheses in (3.25) now follow by familiar properties of Fourier series.32
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When ` 6= 0, the last four components of P`w and Q`f vanish because they1

are nonzero Fourier modes of constant functions. Thus the relevant dimension is2

n` = 6 and the isomorphisms I` : P`W → R6 and J` : P`Z → R6 drop the last four3

components of their arguments:4

I`(t1, t2, t3, t4, η1, η2, b1, b2,m1,m2) = F`(t1, t2, t3, t4, η1, η2),5

J`(f3, f4, . . . , f12) = F`(f3, f4, . . . , f8).6

When ` = 0, the relevant dimension is n0 = 10 and the isomorphisms are simply7

I0 = F0 and J0 = F0.8

All that is left to do to apply Lemma 3.5 is to calculate the matrices9

M`(c) = J`Q`ΠZL(c)EI
−1
` (3.34)10

and to study their kernels and determinants. Fix ` 6= 0, set k = `κ, and consider a11

generic element12

w` = (t̂1, t̂2, t̂3, t̂4, η̂1, η̂2) ∈ R6.13

Then w = I−1
` w` is given by14

w = I−1
` w` = (t̂1, t̂2, t̂3, t̂4, η̂1, η̂2, 0, 0, 0, 0) cos(kx) ∈ P`W,15

and we easily check that16

Ew = (ψ̂1, ψ̂2, η̂1, η̂2, 0, 0, 0, 0) cos(kx) ∈ X,17

where18

ψ̂1 =
sinh k(ζ + h1)

sinh kh1
t̂2 −

sinh kζ

sinh kh1
t̂1,

ψ̂2 =
sinh kζ

sinh kh2
t̂4 −

sinh k(ζ − h2)

sinh kh2
t̂3.

(3.35)19

In particular,20

ψ̂1ζ |ζ=0 = t̂2k coth kh1 − t̂1k csch kh1,

ψ̂2ζ |ζ=0 = t̂4k csch kh2 − t̂3k coth kh2,

ψ̂2ζ |ζ=h2
= t̂4k coth kh2 − t̂3k csch kh2.

(3.36)21

Applying the operator L (see the left hand side of (3.13)) and collecting terms, we22

find that the matrix M` defined in (3.34) is23

M` =


1 0 0 0 0 0
0 1 0 0 −ci 0
0 0 1 0 −ci 0
0 0 0 1 0 −cs

−c̃ik csch kh1 c̃ik coth kh1 cik coth kh2 −cik csch kh2 βi 0
0 0 csk csch kh2 −csk coth kh2 0 βs

 .24

For ` 6= 0, we instead take a generic element w0 ∈ R10 of the form25

w0 = (t̂1, t̂2, t̂3, t̂4, η̂1, η̂2, b1, b2,m1,m2) ∈ R1026

and find that27

EI−1
0 w0 = (ψ̂1, ψ̂2, η̂1, η̂2, b1, b2,m1,m2) ∈ X,28
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where1

ψ̂1 =
ζ + h1
h1

t̂2 −
ζ

h1
t̂1, ψ̂2 =

ζ

h2
t̂4 −

ζ − h2
h2

t̂3. (3.37)2

Applying L as before we obtain the 10× 10 matrix3

M0 =



1 0 0 0 0 0 0 0 −1 0
0 1 0 0 −ci 0 0 0 0 0
0 0 1 0 −ci 0 0 0 0 0
0 0 0 1 0 −cs 0 0 0 −1

−c̃i/h1 c̃i/h1 ci/h2 −ci/h2 βi 0 −1 0 0 0
0 0 cs/h2 −cs/h2 0 βs 0 −1 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

−1/h1 1/h1 0 0 0 0 0 0 0 0
−1/h1 1/h1 1/h2 −1/h2 0 0 0 0 0 0


.4

Lemma 3.7. Suppose that (3.18) holds. Then the matrix M0 is invertible, while5

detM` = −d(`κ, c) so that M` is invertible if and only if d(`κ, c) 6= 0. Moreover,6

the kernel of M` is at most one-dimensional.7

Proof. An explicit calculation shows that (even without (3.18))8

detM0 =
1

h1h2
6= 0.9

Now fix ` 6= 0 and set k = `κ. Since the upper 4× 4 block of M` is the identity, the10

usual arguments for block matrices show that its kernel has the same dimension as11

the 2× 2 matrix12

M̃` =

(
cic̃ik coth kh1 + c2i k coth kh2 + βi cscik csch kh2

cicsk csch kh2 c2sk coth kh2 − βs

)
(3.38)13

obtained by subtracting the product of its bottom-left 2 × 4 block and its upper-14

right 4× 2 block from its bottom-right 2× 2 block and then flipping the sign of the15

first column. Similarly16

detM` = −det M̃` = −d(`κ, c)17

where d(k, c) was defined in (3.1). Thanks to (3.18) and k > 0, the upper-right18

entry of M̃` is nonzero, and so its kernel is at most one-dimensional.19

We are now finally in a position to prove our main existence result.20

Proof of Theorem 3.1. Suppose that c∗, κ satisfy hypotheses (i)–(iii) of the theorem.21

By (iii), the corresponding values of cs, ci, c̃i satisfy (3.18), and so L(c∗) is Fredholm22

with index 0 by Lemma 3.4. Applying Lemma 3.7 we get that M` is invertible for23

` 6= 1 while M1 has a one-dimensional kernel. Moreover by hypothesis (i) of the24

theorem we have25

d

dc

∣∣∣
c=c∗

detM1(c) = −∂d
∂c

(κ, c∗) 6= 0.26

Thus all of the hypotheses of Lemma 3.5 are satisfied, and hence kerL(c∗) = span{ξ}27

is one-dimensional and the transversality condition Lc(c∗)ξ /∈ ranL(c∗) holds. This28

in turn means that the hypotheses of Theorem 3.2 are satisfied, and hence that we29

have a unique curve of solutions to our nonlinear problem (3.17). The constraints30
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(3.3)–(3.5) are built into our formulation of the problem, and are hence satisfied1

automatically.2

It remains to justify the expansions (3.2). Let ξ ∈ kerL(c∗). By Lemma 3.5 we3

have ξ = EI−1
1 µ where µ = (t̂1, t̂2, t̂3, t̂4, η̂1, η̂2) ∈ kerM1. Block matrix calculations4

with M1 similar to those in the proof of Lemma 3.7 show that this implies (η̂1, η̂2) ∈5

ker M̃1. We claim that the entry (M̃1)22 of this matrix is nonzero. Indeed, if it6

were zero then we would have det M̃1 = (cscik csch kh2)
2 6= 0. Thus we can assume7

without loss of generality that our element of the kernel has η̂1 = 1 and8

η̂2 = − (M̃1)12

(M̃1)22
= − csciκ cschκh2

c2sκ cothκh2 + csω2 − g
.9

Thus ξ = EI−1
1 µ = (ψ̇1, ψ̇2, η̇1, η̇2, ḃ1, ḃ2, ṁ1, ṁ2) where10

η̇1 = cos(κx), η̇2 = − csciκ cschκh2
c2sκ cothκh2 + csω2 − g

cos(κx).11

The first two lines of (3.2) are then simply Theorem 3.2(b). The fact that c− c∗ =12

O(ε2) follows from the fact that our nonlinear problem (3.17) is preserved by the13

transformation x 7→ x+ π/κ; see for instance remark 4.8 in [12].14

4. Generalizations and other parametrizations. In this final section we dis-15

cuss how the methods of Section 3 can be applied to a variety of related bifurcation16

problems.17

4.1. Coriolis forces. Thanks to Proposition 2.1, our existence result Theorem 3.118

immediately implies an existence result for waves with nonzero Coriolis parameter Ω.19

On the other hand, the waves along the resulting bifurcation curve will have different20

values of the gravitational constant g, which may not be desirable in applications.21

Nevertheless, we can modify our proof of Theorem 3.1 so that Ω 6= 0 and g are22

both held constant. By Proposition 2.1, we can accommodate Ω 6= 0 simply by23

replacing g by g− 2Ωc in (3.13)–(3.14). This changes the nonlinear terms in unim-24

portant ways, and affects the linear terms only through the lower-order coefficients25

βs, βi. Thus the Fredholm index arguments in Section 3.2 and the calculations in26

Section 3.4 are unaffected, except of course that g must be replaced by g − 2Ωc in27

the dispersion relation d(k, c) = 0. Defining28

dΩ(k, c) =
[(
c2i k

(
(1 + r) coth kh1 + coth kh2

)
+ ci((1 + r)ω1 − ω2)− (g − 2Ωc)r

)
29

×
(
c2sk coth kh2 + csω2 − (g − 2Ωc)

)]
−
(
cscik csch kh2

)2

,30

we therefore have the following corollary.31

Corollary 4.1. Fix κ, h1, h2, r, ω1, ω2, g,Ω. Suppose that at some speed c∗ we have32

(i) (Simple root) dΩ(κ, c∗) = 0 and dΩc (κ, c∗) 6= 0;33

(ii) (Non-resonance) dΩ(`κ, c∗) 6= 0 for ` 6= ±1, 0; and34

(iii) (Non-critical surface and interface) c∗ 6= ω1h2, ω1h1 + ω2h2.35

Then there is an analytic curve of solutions to (1.4), parametrized by a small36

parameter ε, and satisfying (3.2)–(3.5) except that the asymptotic expansion for η237

is replaced by38

η2 = −ε csciκ cschκh2
c2sκ cothκh2 + csω2 − (g − 2Ωc)

cos(κx) +O(ε2).39
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4.2. Wave number as the bifurcation parameter. We have chosen to keep the1

basic wave number κ constant and used c as a bifurcation parameter, but these2

roles can be reversed. To avoid having parameter-dependent domains, we switch3

to a scaled horizontal variable x̃ = x/κ. This replaces the tori Tκ in (3.11) with4

T1 at the cost of replacing the Laplacian ∆ in (3.13) (and hence in L(κ)) with the5

κ-dependent operator κ2∂2x̃ + ∂2ζ . Of course the nonlinear terms Nj are modified6

as well. Defining X,Y, Z, V,W as before, the extension operator E(κ) : W → X is7

now defined in terms of the Dirichlet problems8 
(κ2∂2x̃ + ∂2ζ )ψ1 = 0 in Ω1,

ψ1 = t1 on Γ0,

ψ1 = t2 on Γ1,


(κ2∂2x̃ + ∂2ζ )ψ2 = 0 in Ω2,

ψ2 = t3 on Γ1,

ψ2 = t4 on Γ2,

9

and we replace κ by 1 in the definitions (3.32) and (3.33) of the projections P`, Q`.10

Keeping the shorthand k = `κ, the matrices M` and M0 are unaffected, except11

that they are now viewed as functions of κ = k/` rather than c. This leads to the12

following analogue of Theorem 3.1.13

Corollary 4.2. Define d(k, c) as in (3.1), and fix c, h1, h2, r, ω1, ω2, g. Suppose that14

at some wave number κ∗ we have15

(i) (Simple root) d(κ∗, c) = 0 and dκ(κ∗, c) 6= 0;16

(ii) (Non-resonance) d(`κ∗, c) 6= 0 for ` 6= ±1, 0; and17

(iii) (Non-critical surface and interface) c∗ 6= ω1h2, ω1h1 + ω2h2.18

Then there is an analytic curve of solutions to (1.4) satisfying (3.3)–(3.5), with the19

asymptotic expansions20

η1(x/κ) = ε cos(x) +O(ε2),21

η2(x/κ) = ε− csciκ cschκh2
c2sκ cothκh2 + csω2 − g

cos(x) +O(ε2),22

κ = κ∗ +O(ε2).23

4.3. Non-constant vorticity. In Theorem 3.1 our solutions are perturbations of24

the “trivial” stream functions (3.9) representing a piecewise-linear shear flow. Much25

more general shear flows can also in principle be treated. To avoid getting lost in26

technical issues outside the scope of the present paper, we only sketch the ideas and27

do not state any precise results.28

For simplicity consider the case where the speed c is fixed and κ is the bifurcation29

parameter as above. In place of (3.9) suppose that we are given trivial stream30

functions Ψ1(z) and Ψ2(z) satisfying31

Ψ1(0) = Ψ2(0) = 0, Ψ1z(0) = Ψ2z(0), Ψ1z(−h1) = 0,32

as well as ordinary differential equations33

Ψ1zz = γ1(Ψ1), Ψ2zz = γ2(Ψ2) (4.1)34

for some smooth vorticity functions γ1, γ2 : R → R. To avoid technicalities with the35

ansatz (3.10), we assume Ψ1 is defined and solves (4.1) on an open neighborhood36

of [−h1, 0] and similarly for Ψ2. The first two lines of (3.6) now become37

∆Ψ1 = γ1(Ψ1) in D1,38

∆Ψ2 = γ2(Ψ2) in D2,39
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and hence the first two lines of (3.13) become1

(κ2∂2x̃ + ∂2ζ − γ′1(Ψ1(ζ)))ψ1 = N1(ζ,Φ, DΦ, D2Φ; c) in Ω1,

(κ2∂2x̃ + ∂2ζ − γ′2(Ψ1(ζ)))ψ2 = N2(ζ,Φ, DΦ, D2Φ; c) in Ω2.
(4.2)2

The remaining lines in (3.13) and (3.14) are the same, except that the formulas3

(3.15) for the coefficients are now4

ci = −Ψ1z(0) = −Ψ2z(0),5

cs = −Ψ2z(h1),6

c̃i = (1 + r)ci,7

βi = −gr +Ψ2zΨ2zz(0)− (1 + r)Ψ1zΨ1zz(0),8

βs = g +Ψ2zΨ2zz(h2).9

The operator E(κ) is defined in terms of the Dirichlet problems10 
(κ2∂2x̃ + ∂2ζ − γ′1(Ψ1))ψ1 = 0 in Ω1,

ψ1 = t1 on Γ0,

ψ1 = t2 on Γ1,


(κ2∂2x̃ + ∂2ζ − γ′2(Ψ1))ψ2 = 0 in Ω2,

ψ2 = t3 on Γ1,

ψ2 = t4 on Γ2

11

which have unique solutions for κ outside a (possibly empty) discrete set. This gives12

considerably less explicit analogues of (3.35) and (3.36), leading to similarly implicit13

formulas for the matrices M`, their determinants, and ultimately to a dispersion14

relation dΨ1,Ψ2(κ, c) = 0.15

4.4. The Boussinesq limit. As mentioned in the introduction, the free-surface16

boundary condition treated in Theorem 3.1 is more complicated than the rigid-lid17

condition used in [40, 30], as can be appreciated by inspecting the rather complicated18

dispersion relation (3.1). When studying internal waves with |η2| � |η1|, the rigid-19

lid problem is often put forward as a reasonable approximation of the free-surface20

problem.21

One systematic way to derive a rigid-lid-type model from the free-surface problem22

is to make a Boussinesq approximation. Here the dimensionless density ratio r =23

(ρ1 − ρ2)/ρ2 > 0 is used as a small parameter, while the reduced gravity g′ = gr24

is held constant. Sending r → 0 does not affect (3.6a)–(3.6f), but the dynamic25

boundary conditions (3.6g)–(3.6h) become26

1
2 |∇Ψ2|2 − 1

2 |∇Ψ1|2 + g′η1 = B1 on S1,27

η2 = 0 on S2,28

so that in particular the free surface SN is flat. One can analyze the resulting non-29

linear problem for (Ψ1,Ψ2, η1) using the techniques of this paper; indeed the calcu-30

lations are considerably simpler. However the number and nature of the boundary31

conditions has changed, as well as the number of unknowns, and so the spaces X,Y ,32

etc., must all be changed. As can be guessed by sending r → 0 in (3.1) with g′ = gr33

fixed, the dispersion relation is dBous(k, c) = 0 where34

dBous(k, c) = c2i k
(
coth kh1 + coth kh2

)
+ ci(ω1 − ω2)− g′. (4.4)35

Unlike (3.1), this is a quadratic function of c, and more importantly it is a strictly36

increasing function of k > 0. Thus the existence result can dispense with several of37

the hypotheses in Theorem 3.1:38
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Corollary 4.3. Define dBous(k, c) as above, and fix c, h1, h2, ω1, ω2, g
′. Suppose1

that at some wave number κ∗ 6= 0 we have2

(i) (Root) dBous(κ∗, c) = 0; and3

(ii) (Non-critical interface) c∗ 6= ω1h2.4

Then there is an analytic curve of solutions of the above Boussinesq system, satis-5

fying (3.2)–(3.5) except that η2 ≡ 0.6

For a non-rigorous study of the above Boussinesq approximation in the context7

of the Equatorial Undercurrent, see [42]. An interesting mathematical question is8

to what extent this limit can be made rigorous. For instance, can the solutions in9

Theorem 3.1 be constructed uniformly in a neighborhood of r = 0 with a fixed g′?10

Since this is a singular limit (the dynamic boundary condition (3.6h) changes type),11

any uniform construction will likely involve the introduction of boundary layers12

supported near the free surface.13
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