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Exact free surfaces in constant vorticity flows
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We present an exact solution for periodic traveling waves in two dimensional, infinitely
deep and constant vorticity flows, in the absence of the effects of gravity or surface
tension. The shape of the free surface is the same as for Crapper’s celebrated capillary
waves in an irrotational flow, but the flow beneath the wave, which is also explicit, is
completely different. This confirms a conjecture made by Dyachenko & Hur (2019b,c)
and Hur & Vanden-Broeck (2020), based on numerical and asymptotic evidence.
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1. Introduction

We consider periodic waves at the surface of an incompressible inviscid fluid in two
dimensions, propagating with permanent form a long distance at a practically constant
velocity. Studies of gravity waves in an irrotational flow date back to Stokes (1847, 1880)
and others, and an immense amount of progress has been made over the past one and a
half centuries. Particularly, Stokes’ conjecture about the so-called wave of greatest height
or extreme wave was rigorously proved. Yet the steady water wave problem still poses
many great difficulties. For instance, there are very few exact solutions or approximate
solutions for nearly extreme waves. Such solutions are an invaluable tool both from a
numerical and analytical point of view.

Gerstner (1802) (see also Constantin 2001) produced an interesting example of gravity
waves with nonzero vorticity. The fluid particles for the solution move in perfect circles
whose radius decreases with depth, which are explicitly expressible in Lagrangian coor-
dinates. Moreover, any streamline for the solution can itself be taken as a free surface
and those below it as streamlines, up until the “limiting” configuration for which the
vorticity becomes unbounded and the crest degenerates into a cusp.

On the other hand, Crapper (1957) discovered a striking and surprising exact solution
for capillary waves in an irrotational flow when gravitational acceleration is negligible.
The fluid flow for the solution is given in a concise form in terms of a conformal mapping
in Eulerian coordinates. Like Gerstner waves, any streamline of Crapper’s solution can
be taken as a free surface, up to the limiting wave whose free surface encloses a bubble
of air at the trough. Although Crapper waves solve a highly idealized problem without
gravity or fixed boundaries, they have nevertheless been instrumental when studying the
combined effects of gravity and surface tension (see Chen & Saffman 1979, 1980; Schwartz
& Vanden-Broeck 1979; Longuet-Higgins 1992, among others).
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To the best of the authors’ knowledge, no other solutions are known explicitly for
steady water waves in infinite depth. However, we note that Kinnersley (1976) generalized
Crapper’s solution to finite depth (involving elliptic functions).

Recently, Dyachenko & Hur (2019b,c) (see also Dyachenko & Hur 2019a) found
numerically a family of gravity waves with constant vorticity, in the absence of the
effects of surface tension, whose free surface approaches the limiting Crapper wave in an
irrotational flow as gravitational acceleration vanishes. Hur & Vanden-Broeck (2020) took
matters further and provided numerical and asymptotic evidence of a new exact solution.
The free surface for such solution would be the same as the Crapper wave, but the physical
setting and fluid flow would be altogether different. Like Crapper waves, there is no
gravitational acceleration, but now there is no surface tension either. Instead, the rounded
shape of the free surface is sustained by constant vorticity. Such a connection between
rotational and capillary effects is remarkable and wholly unexpected, and remains to be
fully explained.

Here we analytically confirm that there is indeed an exact solution of this kind. For a
fluid region bounded by a Crapper wave, we find a stream function explicitly in conformal
variables (see (4.5)) which has constant vorticity, the desired asymptotics at great depths,
and which satisfies the kinematic boundary condition on the free surface. Substituting
into the dynamic boundary condition we are able to solve the problem and determine the
value of constant vorticity (see (4.8)). Moreover, the stream function formula allows us
a detailed description of the fluid flow beneath the wave, which exhibits Kelvin’s cat-eye
streamline pattern. Such flow pattern beneath gravity waves with constant vorticity has
previously been studied both analytically (Wahlén 2009, and others) and numerically
(Ribeiro et al. 2017, and others).

While our new exact solution solves a highly idealized problem, neglecting gravity
and fixed boundaries, we believe that, like Crapper waves, it will be significant when
investigating more physically realistic scenarios. For instance, by perturbing the solution
with gravity, as Akers et al. (2014) did for capillary waves in an irrotational flow, it may
be possible to prove the existence of overhanging gravity waves with constant vorticity.
Such waves have long been suggested by numerical computations (see Simmen & Saffman
1985; Teles da Silva & Peregrine 1988; Dyachenko & Hur 2019c, among others), but so
far a rigorous proof has been elusive (Constantin et al. 2016). Another future direction
is to attempt to, as Kinnersley (1976) did for capillary waves, find an analogous exact
solution in finite depth. From Teles da Silva & Peregrine (1988), however, we expect that
our solution in infinite depth will well approximate those in finite depth as soon as the
depth is moderately large.

2. Formulation and conformal mapping

We consider an incompressible inviscid fluid of constant density ρ which occupies a
region D in R2, bounded by a free surface S, and a wave propagating along S. Suppose
for definiteness that in Cartesian coordinates, the x axis points in the direction of wave
propagation and the y axis vertically upwards. Working in a moving reference frame,
we may assume that the wave is stationary and give S a parametrization x = x(α) and
y = y(α), where α ∈ R. We assume that there are no outside forces acting on the fluid
(for instance, gravity), so that the velocity of the fluid (u, v) and the pressure P satisfy
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the Euler equations for an incompressible fluid:{
ρ(uux + vuy) = −Px
ρ(uvx + vvy) = −Py

and ux + vy = 0 in D. (2.1a)

We additionally assume that the scalar vorticity

ω = vx − uy (2.1b)

is a constant. Requiring that each fluid particle on S remains on S, we have a kinematic
boundary condition, which can for instance be expressed as

uyα − vxα = 0 on S. (2.1c)

At great depths we instead require

(u+ ωy + c, v)→ (0, 0) as y → −∞ (2.1d)

for some constant c. When ω = 0, c is the speed of the wave in a frame where the fluid
is at rest at the infinite bottom. Finally, we require the dynamic boundary condition

P = const.− Tκ on S, (2.1e)

where T > 0 is the coefficient of surface tension and

κ =
xαyαα − yαxαα

(x2α + y2α)3/2

is the curvature of S. Throughout we will be interested in motions which are furthermore
periodic in x, and we let k be the associated wave number.

The second equation in (2.1a) allows us to introduce a stream function, defined by

ψx = −v and ψy = u.

Moreover, (2.1c) allows us to normalize ψ so that it vanishes on S. The first equations
in (2.1a) then imply that

1

2
|∇ψ|2 + ωψ +

P

ρ
= const.

throughout D. Switching to dimensionless units with length scale 1/k and velocity scale
c, (2.1) becomes

∇2ψ = −Ω in D, (2.2a)

ψ = 0 on S, (2.2b)

ψy +Ωy + 1→ 0 as y → −∞, (2.2c)

1

2
|∇ψ|2 − τκ = B on S. (2.2d)

Here B is a dimensionless Bernoulli constant, and

Ω =
ω

ck
and τ =

Tk

ρc2

are the dimensionless vorticity and surface tension coefficient. Furthermore, ψ and D, S
are 2π periodic in x.

Identifying R2 with the complex plane, in what follows, let z = x + iy and suppose
that

z = z(α+ iβ)
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Figure 1. Streamlines for the limiting Crapper wave. Curve IV is the free surface. Alternatively,
after an appropriate vertical shift, Curves I, II, III may be thought of as the free surface for the
Crapper wave for different values of A and τ .

conformally maps the lower half plane {α+iβ : β < 0} to D and that S is the restriction of
the conformal mapping to β = 0. We normalize the mapping by requiring that z(α+iβ) ∼
α+iβ as β → −∞ and that x(α)−α and y(α) are 2π periodic. For later use, we calculate

|∇(x,y)ψ|2 =
ψ2
β

|zα|2
on S. (2.3)

This follows from (2.2b) and that z(α+ iβ) is complex analytic.

3. Crapper’s capillary waves in an irrotational flow

When Ω = 0 (irrotational flow), note that

ψ = −β (3.1)

solves (2.2a)–(2.2c). Plugging into (2.2d) and using (2.3), we arrive at

1

2

1

|zα|2
− τ xαyαα − yαxαα

|zα|3
= B on β = 0. (3.2)

One can then verify that the parametric curve due to Crapper (1957)

z(α) = α− 4iA
e−iα

1 +Ae−iα
(3.3)

extends conformally to the lower half plane and solves (3.2), where

τ =
1 +A2

1−A2
and B =

1

2
.

Therefore, z = z(α+ iβ), where z is in (3.3), and (3.1) together make an exact solution
of (2.2) when Ω = 0 and τ 6= 0. For A > Amax ≈ 0.4546700164520109, however, the free
surface intersects itself and the fluid flow becomes multi-valued, whence the solution is
physically unrealistic.

We observe that the streamlines for the solution are simply the curves z = z(α+iβ) for
fixed β(< 0) and that any of these streamlines itself can be thought of as a free surface,
albeit for a different choice of τ . This is because (3.3) enjoys z(α+iβ;A) = z(α; eβA)+iβ.
Figure 1 provides some examples.
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4. Waves in constant vorticity flows

We continue to suppose the conformal mapping z = z(α+ iβ), where z is in (3.3), but
now set τ = 0 and Ω 6= 0. Note that

ψ = −1

2
Ωy2 − y − f (4.1)

solves (2.2a)–(2.2c), provided that f (uniquely) solves
∇2f = 0 in D,

f = − 1
2Ωy

2 − y on S,

∇f → 0 as y → −∞.
(4.2)

To calculate f , it is convenient to view it as a function of the variable

ζ = ei(α+iβ)

taking values in the unit disk. The surface S corresponds to the unit circle |ζ| = 1, where
(3.3) gives

y = Im

(
α− 4iA

ζ +A

)
= − 2(ζ2 + 2Aζ + 1)

(ζ +A)(ζ + 1/A)
(4.3)

and hence

f(ζ) = −1

2
Ωy2 − y = − 2(ζ + 2Aζ + 1)2

(ζ +A)2(ζ + 1/A)2
Ω +

2(ζ + 2Aζ + 1)

(ζ +A)(ζ + 1/A)
.

The values of f in the unit disk can then be calculated using the Poisson integral formula,

f(ζ) = Re

(
1

2πi

∮
|ζ′|=1

f(ζ ′)
ζ ′ + ζ

ζ ′ − ζ
dζ ′

ζ ′

)
. (4.4)

Note that for 0 < A < Amax < 1, the only poles of the integrand in (4.4) with |ζ ′| < 1
are at ζ ′ = 0 and ζ ′ = −A. Using the calculus of residues to evaluate the integral, we
obtain

f(ζ) = Re

(
4ΩA2

A2 − 1

ζ2 − 2A2 + 1

(ζ +A)2
+

4A

ζ +A

)
.

Substitution into (4.1) then yields

ψ = −β − 1

2
Ωy2 − 4ΩA2

A2 − 1
Re

(
ζ2 − 2A2 + 1

(ζ +A)2

)
, (4.5)

where we have simplified using y = β − Re(4A/(ζ +A)).
Differentiating (4.5) using ∂ζ/∂β = −ζ, we calculate

ψβ = −1−Ωyxα +
8ΩA2

A2 − 1
Re

(
ζ(Aζ + 2A2 − 1)

(ζ +A)3

)
,

so that (2.2d) becomes, by (2.3),(
−1−Ωyxα +

8ΩA2

A2 − 1
Re

(
ζ(Aζ + 2A2 − 1)

(ζ +A)3

))2

=
1

2
B|zα|2 on β = 0. (4.6)

Inserting (3.3) leaves us with(
−1 + 2Ω

ζ2 + 2AA2+1
A2−1ζ + 1

(ζ +A)(ζ + 1/A)

)2

= 2B
(ζ −A)2(ζ − 1/A)2

(ζ +A)2(ζ + 1/A)2
, (4.7)
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Figure 2. Free surfaces and streamlines, in the (x, y) plane, for the new exact solutions in (4.5)
for A = Amax/4, Amax/2, 3Amax/4, and Amax. Up to a vertical shift, the free surfaces I–IV
coincide with the streamlines I–IV for the Crapper wave in Figure 1. The stagnation points
are shown in red, together with the heteroclinic connections between the saddle points. These
heteroclinic orbits enclose a so-called critical layer of closed streamlines, which in particular
contains the dashed blue curve across which the horizontal velocity changes sign.

which must hold for all |ζ| = 1. Indeed, since the two sides of (4.7) are rational functions
of ζ, the equation must hold for all ζ ∈ C where the denominators do not vanish. Plugging
in ζ = 0 and ζ = A, and recalling that 0 < A < Amax < 1/2, we find at once that

Ω =
1−A2

1− 3A2
and B =

1

2

(
1 +A2

1− 3A2

)2

. (4.8)

Note that Ω > 0. Somewhat miraculously, a direct calculation shows that the choice
(4.8) in fact solves (4.7) for all ζ where the denominators do not vanish. In particular,
(4.6) holds and hence ψ solves (2.2).

To recapitulate, z = z(α + iβ), where z is in (3.3), and (4.5) together make a new
exact solution of (2.2) when Ω > 0 and τ = 0. The vorticity Ω and Bernoulli constant
B are specified in terms of 0 < A < Amax by (4.8), yielding a one-parameter family of
solutions.

5. The fluid flow beneath the waves

Since we have an explicit formula (4.5) for the stream function, it is straightforward
to plot streamlines. Figure 2 shows the streamlines associated with the Crapper wave
profiles I–IV in Figure 1 in the (x, y) plane, while Figure 3 shows the same streamlines
in the (α, β) plane.

Unlike for Crapper’s capillary waves in an irrotational flow, there are now closed
streamlines as well as stagnation points, where ψx = ψy = 0 or, equivalently, ψα =
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Figure 3. The examples from Figure 2 in the (α, β) plane. Here the streamline β = 0 corresponds
to the free surface. Note that the stagnation points in a given wave all have the same value of β.

ψβ = 0. Since yα(α + i0) alternates sign on each half-period, a maximum principle
argument shows that the same is true of ψα as well as the vertical velocity v = −ψx.
Hence stagnation points can only occur on the vertical lines x = α = ±π,±3π, . . . below
the crests or the lines x = α = ±2π,±4π, . . . below the troughs. In either case they
can be calculated numerically using a simple root-finding algorithm. Interestingly, the
stagnation point below the crest and the stagnation point below the trough have precisely
the same value of β, as can be confirmed analytically by calculating the ratio

ψβ(π, β)

ψβ(0, β)
=

(
1 +Aeβ

1−Aeβ

)4

> 0.

The stagnation points below the troughs are saddles, and are connected by pairs of
heteroclinic orbits enclosing regions of closed streamlines. The dashed blue curve in the
figures shows where the horizontal velocity

u = ψy =
ψαyα + ψβxα
x2α + y2α

vanishes. It is a single closed curve in cases I–III where the surface is single-valued, but
not for the overhanging wave in IV.

6. Remark on a single equation for constant vorticity

In §3, in an irrotational flow, the boundary value problem (2.1) for the stream function
and the free surface reduced to a single equation (3.2) for the conformal parametrization
of the free surface alone. In §4, in a constant vorticity flow, on the other hand, we inserted
the ansatz (3.3) and solved (2.1) for the stream function. A single equation does exist
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for constant vorticity (see Dyachenko & Hur 2019b,c, for instance), however, and in our
notation can be written

1

2

(
1 +Ω

(
yxα −H(yyα)

))2
|zα|2

= B on β = 0. (6.1)

Here H is the periodic Hilbert transform, defined by

Hf(α) =
1

2π
PV

∫ π

−π
f(α′) cot

(
α− α′

2

)
dα′, (6.2)

where PV means the principal value integral. Using x(α) = α +Hy(α), one can in fact
write (6.1) (or indeed (3.2)) in terms of y alone.

By the argument in the previous section, the conformal mapping in (3.3) satisfies (6.1),
provided that Ω and B are in (4.8). This can also be verified directly. It is convenient
to introduce ζ = ei(α+iβ) as before, so that (3.3) means y(α) is given by (4.3). We use
the Plemelj formula (see King 2009, Chapter 3, for instance, for details) to find that for
|ζ| = 1,

Hf(ζ) =
1

π
PV

∮
|ζ′|=1

f(ζ ′)

ζ − ζ ′
dζ ′

=
1

π
lim
r→1

∮
|ζ′|=r<1

f(ζ ′)

ζ − ζ ′
dζ ′ − if(ζ).

We can then evaluate the Hilbert transform using the calculus of residues. In particular,

yHyα −H(yyα) =
−8Aζ

(A2 − 1)(ζ +A)(ζ + 1/A)
.

We omit the details.

7. Summary

We have found a new exact solution for periodic traveling waves in a constant vorticity
flow of infinite depth, in the absence of the effects of gravity or surface tension, confirming
numerical and asymptotic evidence (Dyachenko & Hur 2019b,c; Hur & Vanden-Broeck
2020). The free surface is the same as that of Crapper’s capillary wave in an irrotational
flow (Crapper 1957), but the fluid flow beneath the wave, which is also explicit, is
completely different, exhibiting Kelvin’s cat-eye streamline pattern. The zero gravity
assumption may not be physically realistic for surface water waves. On the other hand,
the very few exact solutions for free surface flows all solve highly idealized problems.
Such solutions can nevertheless be significant for both rigorous analysis and numerical
computation. Moreover, in our case, the zero gravity assumption reveals a striking
connection between rotational and capillary effects.
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