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1. MOTIVATION

1.1. Fluid mechanics. Obviously fluids are hugely important in ev-
ery day life: tea in a mug, plumbing, the oceans, the atmosphere,
rivers, the interior of the earth, blood in our veins. On the other hand,
fluid mechanics isn’t exactly cutting-edge theoretical physics anymore,
and most authors publishing in fluid mechanics journals are engineers
or mathematicians. Many of the basic mathematical questions about
the PDEs of fluid mechanics remain open, even if they are “closed” for
the physicists.

Perhaps the most famous equations are the Navier–Stokes equa-
tions:

∂u
∂t

+ (u ·∇)u =−∇p+ν∆u,

∇·u = 0.

Here u(x, y, z, t) is the velocity field, p(x, y, z, t) is the pressure, and
ν ≥ 0 is a constant related to frictional (viscous) forces in the fluid.
When ν= 0 we obtain the Euler equations.

One of the Clay Math Millennium problems (1 million dollar prize)
is: Do the Navier Stokes equations in 3D have smooth initial solutions
for smooth initial data, or do the solutions break down? The same
question is also open for for the Euler equations!

1.2. Model equations and special solutions. The basic equations
of fluid mechanics are complicated and have few explicit solutions. As
usual with PDEs, we can get more understanding by deriving approx-
imate models in asymptotic regimes, looking for special solutions like
traveling waves, or doing both at the same time!

Rigorously justifying this sort of procedure from a mathematical
point of view, though, can be highly nontrivial. In this lecture we
will consider the question: Does a traveling-wave solution of an ap-
proximate model approximate an exact traveling-wave solution of the
full equations? (Or just a solution that is approximately traveling?)
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1.3. Stokes waves. Consider the following two-dimensional problem:

air

water
∆φ= 0

y=−d

y= 0
η(x, t)

φy = 0

{
ηt −φy +φxηx = 0
φt + 1

2 |∇φ|2 + gη= 0

Here u = ∇ϕ solves the Euler equations in the water region, and the
pressure is constant on the surface. Moreover, fluid particles on the
surface and bed remain there for all time.

Notice that η = 0 and ϕ = 0 is always a solution, describing a flat
surface and no motion. When η and ϕ are both “small” then a formal
calculation leads to the approximate (“linearized”) equation

∆φ= 0

y=−d

y= 0

φy = 0

φtt + gφy = 0

At this level of approximation, the surface profile η(x, t)=− 1
gϕt(x,0, t).

Looking for traveling wave solutions that depend on (x− ct, y), we
eventually get

η= A cos x, ϕ=−gA cosh(k(y+d))cos x, c2 = g
tanh(kd)

k
where the amplitude A is a free constant. The last equation is called
the dispersion relation. Fixing k, the solution-set can be repre-
sented by two crossed lines in the (A, c) plane:

A

c√
g tanh(kd)/k

boring

interesting

The mathematical question is to what extent this picture applied to
the full problem without any approximations. What does the amplitude-
wavespeed diagram look like, for instance?
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2. LOCAL BIFURCATION THEORY

Recall the following version of the implicit function theorem:

Theorem 1 (Implicit function theorem). If F : X ×Λ→Y is a Ck map-
ping between Banach spaces for some k ≥ 1, F(x0,λ0) = 0, and the
partial derivative Fx(x0,λ0) is invertible, then we can “locally solve
F(x,λ)= 0 for x as a function of λ”.

This describes situations where the zero-set of F looks like a smooth
curve or surface. Since we want something more like two intersecting
lines, we have to look at situations where the hypotheses of the implicit
function theorem fail. This is (local) bifurcation theory!

2.1. Simplest example. Let F : R×R → R be smooth, and suppose
that F(0,λ)= 0 for all λ. These are the boring or trivial solutions that
we already know about. If Fx(0,λ0) 6= 0, then by the implicit function
theorem there are no other solutions near (0,λ0), so let’s assume from
now on that Fx(0,λ0) = 0. (This is like the dispersion relation in our
model problem.)

To see what’s going on in this case, we Taylor expand

0= F(x,λ)=�����F(0,λ0)+�����Fx(0,λ0)x+�����Fλ(0,λ0)x

+ 1
2

Fxx(0,λ0)x2 +Fxλ(0,λ0)xλ+ 1
2�

�����Fλλ(0,λ0)λ2 +·· ·

Dividing through by x, we therefore hope there is a nontrivial solution
given by

λ−λ0 =− Fxx(0,λ0)
2Fxλ(0,λ0)

x+·· · ,

at least if Fxλ(0,λ0) 6= 0.
x

λ
λ0

To prove this, we use the fundamental theorem of calculus and the
fact that F(0,λ)= 0 to write

F(x,λ)=
∫ 1

0

d
dt

F(tx,λ)dt =
(∫ 1

0
Fx(tx,λ)dt

)
x.

Thus, for x 6= 0, F(x,λ)= 0 if and only if G(x,λ)= 0 where

G(x,λ)=
∫ 1

0
Fx(tx,λ)dt = F(x,λ)

x
.
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Now we simply apply the implicit function theorem to G. We calculate

G(0,λ0)=
∫ 1

0
Fx(0,λ0)dt = Fx(0,λ0)= 0,

Gλ(0,λ0)=
∫ 1

0
Fxλ(0,λ0)dt = Fxλ(0,λ0) 6= 0.

Thus we can uniquely locally solve G(x,λ)= 0 for λ as a function of x.

2.2. Generalization to higher dimension. As often happens in math-
ematics, the above argument can be generalized in many directions.
When F is a mapping between Banach spaces, it is the famous Crandal–
Rabinowitz theorem (1971).

This theorem can be applied in our water wave problem above to
justify our formal linear calculations. These waves are called Stokes
waves. With a bit more calculation (third derivatives of F, basically),
you can start to figure out what the amplitude-wavespeed diagram
looks like:

A

cboring

interesting

3. GLOBAL BIFURCATION

Let’s think about a slightly different question: What is the global
structure of our solution set?

3.1. Simplest example. For F : R×R→R as above, we can provide a
pictorial “proof” of the following claim.

Claim 1. The solutions we found with x > 0 are part of a connected
component S of nontrivial solutions which is either unbounded or ap-
proaches another trivial solution (0,λ1) 6= (0,λ0).

If not, then we have something like the following diagram:
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x

λ

F 6= 0

−
−

+
+

Near the bifurcation point (0,λ0),

F(x,λ)≈ x
(

1
2 Fxx(0,λ0)x−Fxλ(0,λ0)λ

)
alternates signs in a predictable way. Since S is bounded and doesn’t
approach any other trivial solutions, we can separate it from other
zeros of F, including the trivial solutions, using the dashed curve (not
really a curve!). But then, moving along this curve, we can connect
a region where F > 0 to a region where F < 0 without ever passing
through a point where F = 0, which is a contradiction.

3.2. Generalization to higher dimension. These ideas also gener-
alize to higher dimensions. When x ∈R2 you can use winding numbers,
for x ∈Rn you can use the Brouwer degree, and for x in a Banach space
you can use the Leray–Schauder degree.

This last generalization was applied to our water wave problem as
part of the proof of the famous “Stokes conjecture”. At the ends of the
bifurcation curves, one finds “extreme” waves with a sharp corner at
each crest with a 120° interior angle.

120◦ 120◦
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