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Abstract. In this note we construct smooth bounded domains Ω ⊂ R2, other than disks, for
which the overdetermined problem

∆u+ λu = 0 in Ω,

u = b on ∂Ω,

∂u

∂n
= c on ∂Ω

has a solution for some constants λ, b, c 6= 0. These appear to be the first counterexamples to a
conjecture of Willms and Gladwell [WG94].

1. Introduction

In this introduction we consider overdetermined elliptic problems of the form

∆u+ λu = 0 in Ω, (1.1a)
u = b on ∂Ω, (1.1b)

∂u

∂n
= c on ∂Ω, (1.1c)

where λ, b, c are constants, Ω ⊂ Rn is a smooth bounded domain, and the function u is non-
constant. There are explicit radially symmetric solutions to such problems when Ω is a ball, and
it is natural to ask whether these are the only solutions.

The conjecture that balls are the only solutions of (1.1) when c = 0, attributed to Schiffer
[Yau82, Problem 80], is a famous and long-standing open problem in spectral geometry. Its
interest is due in part to its connection to the Pompeiu problem; see [BST73, Wil76, Ber80] and
the survey [Zal92]. While the Schiffer conjecture remains open, there are many partial results
showing that it holds under additional assumptions, including [Ber80, BY87, Avi86, Den12, KL20,
Mon23]. In particular, Agranovsky [Agr93] (in two dimensions) and Kobayashi [Kob93] (in any
dimension) independently showed that the conjecture holds for small perturbations of balls, and
so there is no hope of finding counterexamples using local bifurcation arguments. Also see [Can14]
for a related result which only requires (1.1c) to hold in an average sense. In terms of negative
results, Shklover [Shk00] showed that a generalization of Schiffer’s conjecture to Riemannian
manifolds is false, and recently Fall, Minlend, and Weth [FMW24] found counterexamples on
the sphere S2 – disproving a conjecture of Souam [Sou05] – as well as a family of non-trivial
solutions bifurcating from cylinders when Ω is allowed to be unbounded. Even more recently,
Enciso, Fernández, Ruiz, and Sicbaldi [EFRS25] have constructed solutions bifurcating from
two-dimensional annuli with different values of the constant b on each boundary component.

The analogue of Schiffer’s conjecture for b = 0 – so that λ is a Dirichlet rather than Neu-
mann eigenvalue – was posed by Berenstein [Ber80] and is also still open. Although less well-
studied than the Neumann version, there are still some partial results. For instance, the works
[Ber80, BY87] mentioned above contain related results on both conjectures. As in the Neumann
case, there are also counterexamples to generalized versions of the conjecture. Shklover [Shk00]
constructed examples on certain Riemannian manifolds, and Sicbaldi found positive solutions
involving unbounded domains bifurcating from cylinders [Sic10]; also see [SS12]. More recently,
Minlend [Min23] and Dai and Zhang [DZ23] have found sign-changing solutions involving un-
bounded domains.
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Several authors mention an analogue of Schiffer’s conjecture without any restrictions on the
constants b, c, and to the best of our knowledge this question has also remained open. The
earliest statement of the conjecture appears to be by Willms and Gladwell [WG94], who proved
that it holds under the assumption that u has no saddle points. In a subsequent paper with
Chamberland [WCG95] they also discussed ‘dual’ formulations of the problem. Williams [Wil02]
stated a more precise version of the conjecture and studied (among other things) the analyticity
of solutions, while Souam [Sou05] proved an analogue of the conjecture on the sphere S2 when
λ = 2. Dalmasso [Dal10] showed that, in two dimensions and under some assumptions on the
domain Ω, for any fixed c 6= 0 there can be at most finitely many pairs (λ, b) for which (1.1)
has a solution. In a later paper, Dalmasso [Dal14] proved that the conjecture holds if either
λ is at most the first Dirichlet eigenvalue of the Laplacian, or if Ω is convex and symmetric
about a hyperplane and λ is at most the second Dirichlet eigenvalue. While (1.1) with both
b, c 6= 0 is no longer an overdetermined eigenvalue problem for the Laplacian, after making the
simple transformation u 7→ u+ b it can be thought of as an overdetermined semilinear eigenvalue
problem

∆u+ λf(u) = 0 in Ω, u = 0,
∂u

∂n
= c on ∂Ω, (1.2)

with the specific nonlinearity f(u) = u+ b. This form of the problem was studied by Canuto and
Rial [CR08], who showed that the unit ball is an isolated solution provided λ > 0 lies outside
a certain countable set. Canuto [Can11] later proved a related result with a less restrictive
hypothesis on λ but, at least in the context of (1.2), a more restrictive hypothesis on c.

By Serrin’s result [Ser71], semilinear problems of the form (1.2) can have a solution u with a
strict sign only when Ω is a ball. The existence of sign-changing solutions for bounded domains Ω
other than balls, however, has remained open until quite recently. The only result we are aware
of is due to Ruiz [Rui25], who constructed sign-changing solutions to (1.2) using nonlinearities of
the form f(u) = u− (u+)3 in dimensions 2, 3, and 4. For sign-changing solutions in unbounded
domains, see the references [Min23, DZ23] mentioned earlier. Lastly, we mention the construction
by Kamburov and Sciaraffia [KS21] of solutions in annular domains with nonlinearity f(u) = 1,
where (as in [EFRS25]) they allow the constants in the boundary conditions to differ on the two
boundary components.

In this note, we use local bifurcation techniques to construct families of solutions to (1.1)
close to the unit disk in two dimensions. The leading-order expansions for these solutions imply
that they are not disks, and so the above Willms–Gladwell conjecture is false, at least in two
dimensions. As a construction of sign-changing solutions to an overdetermined semilinear prob-
lem (1.2), our proof is much simpler than that of Ruiz [Rui25], which is to be expected given
our much simpler nonlinearity and our restriction to two dimensions. Also, unlike in [Rui25] our
functions u are real-analytic.

1.1. Statement of the main result. Before stating our result more precisely, we need the
following lemma about Wronskians of Bessel functions. Here and in what follows we use the
standard notation Jν for the Bessel function of the first kind with order ν.

Lemma 1.1. For any integer m ≥ 4, the Wronskian W1,m := J1J
′
m − JmJ ′

1 has a smallest
positive root µm > 0. Moreover, this root µm is simple, strictly decreases as a function of m, and
satisfies the inequalities j1,1 < µm < j0,2, where here j1,1 ≈ 3.8317 is the first positive root of J1
and j0,2 ≈ 5.5201 is the second positive root of J0.

Theorem 1.2. Fix n = 2, b = 1, and α ∈ (0, 1). For any integer m ≥ 4, there exists ε0 > 0 and
a curve of classical solutions to (1.1), parametrized by ε ∈ (−ε0, ε0), with the following properties.

(i) For ε 6= 0, the domain Ω(ε) is not a disk.
(ii) The solutions are m-fold symmetric, in the sense that Ω(ε), u(ε) are invariant under

rotations by an angle 2π/m as well as reflections across the horizontal axis.
(iii) The domains Ω(ε) are described by conformal mappings φ(ε) : D → Ω(ε), where D is the

unit disk, and the unknowns

(u ◦ φ, φ, c, λ) ∈ C2+α(D)× C2+α(D,C)× R2 (1.3)
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m = 4 m = 5 m = 6

Figure 1. Exaggerated sketches of the domains Ω(ε) and functions u(ε) from
Theorem 1.2 for m = 4, 5, 6, based on the leading-order approximation (1.4).

depend real-analytically on ε.
(iv) As ε → 0 we have the asymptotic expansions

φ(reiθ; ε) = reiθ + ε(reiθ)m+1 +O(ε2), (1.4a)

(u ◦ φ)(reiθ; ε) = J0(µmr)

J0(µm)
+ εµm

(
J1(µm)Jm(µmr)

J0(µm)Jm(µm)
− J1(µmr)

J0(µm)
rm+1

)
cosmθ +O(ε2), (1.4b)

c(ε) = −µm
J1(µm)

J0(µm)
+O(ε2), (1.4c)

λ(ε) = µ2
m +O(ε2) (1.4d)

in the spaces (1.3).

Remark 1.3. For each fixed ε, the domains Ω(ε) are in fact real-analytic. As observed by
Williams [Wil02], this follows from [KN77, Theorem 2]. The functions u( · ; ε) are therefore
also real-analytic up to the boundary.
Remark 1.4. Possibly after shrinking ε0 > 0, the first conclusion (i) of Theorem 1.2 is an im-
mediate consequence of (1.4a). The asymptotic formulas (1.4) are illustrated in Figure 1 for
m = 4, 5, 6, using an unreasonably large value of ε > 0 so that the saddles and local extrema of u
are more apparent. Note that the existence of at least one saddle point is guaranteed by [WG94,
Theorem 1]. While the arrangement of critical points in the figure is qualitatively correct, the
domains Ω(ε) of the exact solutions with small ε will necessarily be convex.
Remark 1.5. If (Ω, u) solves (1.1) with parameters (λ, b, c), then, for any constants A > 0 and
B ∈ R, so does (A−1Ω, Bu(A · )) with parameters (A2λ,Bb,ABc). Thus, provided b 6= 0, we are
free to set b = 1 in Theorem 1.2 without loss of generality. Similarly, we are free to fix one of
the other parameters λ, c (provided they are nonzero) or alternatively to fix the scale of Ω. We
choose the latter, normalizing the conformal mapping to satisfy φ′(0) = 1; see (2.10) below.
Remark 1.6. As we will see in Section 4, the bounds on µm in Lemma 1.1 imply that J0(µm)
and J1(µm) are negative while Jm(µm) is positive. Thus the denominators appearing in (1.4)
are nonzero, the O(ε) terms in (1.4a) do not vanish identically, and (1.4c) implies c(ε) < 0 for
|ε| sufficiently small. One can also check that, as must be the case, µm lies in the discrete set Λ
defined in [CR08, Lemma 3.7 and Definition 3.9] where their local uniqueness proof fails.
1.2. Outline of the paper. In Section 2, we transform (1.1) into an abstract operator equation
F (v, w, γ;µ) = 0 where F : X × I → Y is a real-analytic mapping between Banach spaces.
There are many ways to effect such a transformation; we use conformal mappings combined with
a change of dependent variables which partially decouples the linearized equations. In Section 3,
we prove Theorem 1.2, assuming that Lemma 1.1 holds, by applying a real-analytic version of
the standard Crandall–Rabinowitz theorem [CR71]. In part because of the careful choice of
variables in Section 2, the required analysis of the linearized operators L (µ) quickly boils down
to questions about the Wronskian W1,m appearing in Lemma 1.1, which we then finally prove in
Section 4 using ideas from [Pá13].
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2. Reformulation

As is usual in bifurcation analyses of free boundary problems, we begin by reducing (1.1)
to a problem in a fixed domain by introducing an appropriate diffeomorphism which becomes
a new unknown. Since we are in two dimensions, conformal mappings are a natural option
which simplify some of the calculations, but this choice is not essential. To streamline the linear
analysis, we then make a further change of dependent variables which mixes the unknown u and
this conformal mapping.

2.1. Preliminaries. To avoid dealing with square roots in some of the calculations below, we
replace the boundary condition (1.1c) with half of its square,

1

2

(
∂u

∂n

)2

=
1

2
c2 on ∂Ω. (2.1)

This is of course equivalent provided we choose the sign of c appropriately. For similar reasons,
we switch from the parameter λ > 0 to

µ :=
√
λ. (2.2)

We will assume throughout that µ lies in the interval

I := (j1,1, j0,2), (2.3)

where, as in Lemma 1.1, j1,1 ≈ 3.8317 is the first positive root of J1 and j0,2 ≈ 5.5201 is the
second positive root of J0.

2.2. Conformal change of variables. Fixing once and for all a Hölder parameter α ∈ (0, 1),
suppose that w ∈ C2+α(D,R2) is a holomorphic vector field on the unit disk D ⊂ R2 ∼= C, i.e. its
components (w1, w2) satisfy the Cauchy–Riemann equations

∂1w1 − ∂2w2 = 0, (2.4a)
∂2w1 + ∂1w2 = 0 (2.4b)

in D. Provided ‖w‖C2+α(D) is sufficiently small, the near-identity map φ = id + w is a diffeo-
morphism onto its image, which is a C2+α domain Ω. Letting ũ = u ◦ φ ∈ C2+α(D), it is
straightforward to check that the problem (1.1a), (1.1b), (2.1) with b = 1 and λ = µ2 is then
equivalent to

∆ũ+ µ2 det(I +Dw) ũ = 0 in D, (2.4c)
ũ = 1 on ∂D, (2.4d)

1
2 ũ

2
r − 1

2c
2 det(I +Dw) = 0 on ∂D, (2.4e)

where a subscript r is shorthand for an application of the usual radial derivative ∂r = |x|−1x ·∇.
For algebraic convenience we have also multiplied both (1.1a) and (2.1) by the positive function
det(I + Dw). Identifying R2 with C, we note that det(I + Dw) = |1 + w′|2 where w′ is the
complex derivative of the holomorphic function w.

The transformed problem (2.4) has a family of “trivial” radially symmetric solutions, expressed
in polar coordinates (r, θ) as

ũ = U(r;µ) :=
J0(µr)

J0(µ)
, w = 0, c = Ur(1;µ) =

µJ ′
0(µ)

J0(µ)
= −µJ1(µ)

J0(µ)
, (2.5)

where in the last equality we have used the fact that J ′
0 = −J1. We recall that, for any k ≥ 0,

the Bessel function Jk is, up to scaling, the unique solution of the ordinary differential equation

J ′′
k +

1

µ
J ′
k +

(
1− k2

µ2

)
Jk = 0 for µ > 0 (2.6)

which is finite at µ = 0. We are interested in the solutions (2.5) only for µ lying in the interval
I from (2.3), and on this interval both J0 and J1 are strictly negative.
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2.3. Simplifying the linear part. A downside of the formulation (2.4) is that the unknowns
u,w are coupled in both (2.4c) and (2.4e). At the nonlinear level this is unavoidable, but at
the linear level the equations can be partially decoupled using a standard trick motivated by the
chain rule.

Define v ∈ C2+α(D) and γ ∈ R in terms of ũ, w, c by
ũ =: U + v +∇U · w,
c =: Ur(1;µ)− γ.

(2.7)

Inserting (2.7) into (2.4) and grouping the linear terms in v, w, γ, there are several cancellations
and we are left with the system

∂1w1 − ∂2w2 = 0 in D, (2.8a)
∂2w1 + ∂1w2 = 0 in D, (2.8b)

∆v + µ2v = N1(∇v,Dw, γ, x;µ) in D, (2.8c)
v + Ur x · w = 0 on ∂D, (2.8d)

Urvr − Urrv + Urγ = N2(∇v,Dw, γ, x;µ) on ∂D, (2.8e)
where as a final step we have used (2.8d) to eliminate w from the left hand side of (2.8e). The
nonlinear terms are given explicitly by

N1(∇v,Dw, γ, x;µ) = −µ2
(
U detDw + (v +∇U · w)∇ · w + (v +∇U · w) detDw

)
,

N2(∇v,Dw, γ, x;µ) = 1
2(v

2
r − γ2) + Ur(

1
2vr + γ)∇ · w + Urrvrx · w

+ 1
2(∇U · w)2r − 1

2U
2
r detDw + γUr detDw − 1

2γ
2∇ · w,

although we emphasize that these formulas play essentially no role in the following analysis.

2.4. Symmetry and functional setting. We restrict attention to solutions of (2.8) which are
m-fold symmetric in the sense of Theorem 1.2(ii). Identifying R2 with C, this can be conveniently
expressed as

v(e2πi/mz) = v(z) = v(z̄), (2.9a)

w(e2πi/mz) = e2πi/mw(z), w(z̄) = w(z) (2.9b)

for all z ∈ D. We also require Dw(0) = 0, which by (2.8a), (2.8b), and (2.9b) is equivalent to the
single real condition

∂1w1(0) = 0. (2.10)
This enforces the normalization φ′(0) = 1 for the conformal mapping φ = id + w, which in turn
fixes the scale of Ω; see Remark 1.5.

We now introduce the Banach spaces
X :=

{
(v, w, γ) ∈ C2+α(D)× C2+α(D,C)× R : (2.8a), (2.8b), (2.9), (2.10) hold

}
,

Y :=
{
(f1, f2, f3) ∈ Cα(D)× C2+α(∂D)× C1+α(∂D) : each fi has the symmetry (2.9a)

}
.

Defining the interval I = (j1,1, j0,2) as in (2.3), we can then interpret (2.8) as an operator equation
F (v, w, γ;µ) = 0, where F : X × I → Y is the real-analytic mapping given by

F1(v, w, γ;µ) := ∆v + µ2v −N1(∇v,Dw, γ, x;µ),

F2(v, w, γ;µ) := v + Ur x · w,
F3(v, w, γ;µ) := Urvr − Urrv + Urγ −N2(∇v,Dw, γ, x;µ).

Since F only involves partial derivatives and compositions with real-analytic functions, its real-
analyticity is standard; see for instance [dlLO99] and [Val88, proof of Theorem II.5.2]. It is also
not difficult to verify that F respects the symmetries in the definitions of X ,Y , especially if
one uses (2.7) to reintroduce ũ and writes det(I +Dw) = |1 + w′|2 using complex variables.

The trivial solutions (2.5) are now represented by points (0, µ) ∈ X × I, where the associated
linearized operators

L (µ) := D(v,w,γ)F (0, 0, 0;µ) : X −→ Y
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are given in components by

L (µ)

v
w
γ

 =

 ∆v + µ2v
v + Ur x · w

Urvr − Urrv + Urγ

 . (2.11)

The advantage of (2.8) over a more direct approach to (2.4) is that the first and third components
of (2.11) have constant coefficients and do not involve w.

3. Proof of the theorem

In this section we prove Theorem 1.2, assuming Lemma 1.1. The main tool is the following
real-analytic version of the celebrated Crandall–Rabinowitz theorem [CR71] on bifurcation from
a simple eigenvalue.

Theorem 3.1 (Theorem 8.3.1 in [BT03]). Let X,Y be Banach spaces, let I ⊂ R be an open
interval, and let F : X × I → Y a real-analytic mapping with F (0, µ) = 0 for all µ ∈ I. Denoting
the associated linearized operators by L(µ) := DxF (0, µ), suppose that, for some µ∗ ∈ I,

(a) L(µ∗) is Fredholm with index 0;
(b) the kernel of L(µ∗) is one dimensional, spanned by ξ∗ ∈ X; and
(c) (Transversality) ∂µL(µ

∗)ξ∗ /∈ ranL(µ∗).
Then there exists ε0 > 0 and a pair of analytic functions (x̃, µ̃) : (−ε0, ε0) → X × I such that

(i) F (x̃(ε), µ̃(ε)) = 0 for all ε ∈ (−ε0, ε0);
(ii) x̃(0) = 0, µ̃(0) = µ∗, and x̃ε(0) = ξ∗; and
(iii) there exists an open neighborhood U of (0, µ∗) in X × R such that{

(x, µ) ∈ U : F (x, µ) = 0, x 6= 0
}
=

{
(x̃(ε), µ̃(ε)) : 0 < |ε| < ε0

}
.

We will verify the hypotheses of Theorem 3.1 in a series of lemmas. First, we state a basic
result about the second component of the operator L (µ).

Lemma 3.2. Suppose that g ∈ C2+α(∂D) has the symmetries (2.9a). Then the problem
∂1w1 − ∂2w2 = 0 in D,
∂2w1 + ∂1w2 = 0 in D,

x · w = g on ∂D
(3.1)

has a solution w ∈ C2+α(D,R2) satisfying (2.9b) and (2.10) if and only if g has mean zero, and
in this case the solution is unique.

Proof. Throughout the proof we identify R2 with C whenever convenient. Given g as in the
statement, let G ∈ C2+α(D,C) be the unique solution to the Schwarz boundary value problem

∂1G1 − ∂2G2 = 0 in D,
∂2G1 + ∂1G2 = 0 in D,
G1 = ReG = g on ∂D

(3.2)

with ImG(0) = 0. By uniqueness and the symmetry of g, we deduce that G has the symmetry
(2.9a). If g has zero mean, then the mean value property for the harmonic function ReG implies
that ReG(0) = 0 and hence G(0) = 0. It is now straightforward to check that w(z) := zG(z)
solves (3.1) and satisfies (2.9b) and (2.10). Conversely, if w satisfies (3.1) as well as (2.9b) and
(2.10), then G(z) := w(z)/z is a well-defined holomorphic function on D which solves (3.2) with
ImG(0) = 0. Uniqueness for (3.2) now gives uniqueness for w, while the mean value property
for ReG and ReG(0) = ∂1w1(0) = 0 together imply that g has zero mean. �

Lemma 3.3. For any µ ∈ I, the operator L (µ) is Fredholm with index 0.

Proof. As L (µ) is a compact perturbation of the operator

L̃ (µ) :

v
w
γ

 7→

 ∆v − v
v + Ur x · w

Urvr

 , (3.3)
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it suffices to show that L̃ (µ) is Fredholm with index 0. To this end, let f = (f1, f2, f3) ∈ Y .
The first and third components of the equation

L̃ (µ)(v, w, γ) = (f1, f2, f3) (3.4)

form an inhomogeneous Neumann problem
∆v − v = f1 in D,

vr = U−1
r f3 on ∂D.

This problem has a unique solution v = ṽ(f1, f3) ∈ C2+α(D), and uniqueness together with the
symmetries of the data f1, f3 in the definition of Y forces v to satisfy (2.9a).

It remains to consider the second component of (3.4), which rearranges to

x · w = U−1
r (f2 − ṽ(f1, f3)) on ∂D.

Applying Lemma 3.2, we deduce that (3.4) has a solution if and only if the solvability condition∫
∂D

(f2 − ṽ(f1, f3)) ds = 0

holds, and that in this case the solution is unique. Since the parameter γ ∈ R does not appear on
the right hand side of (3.3), we conclude that L̃ (µ) has index zero and the proof is complete. �

Lemma 3.4. Let µm be as in Lemma 1.1. Then the kernel L (µm) is one-dimensional, spanned
by (Vm( · ;µm),Wm( · ;µm), 0) where Vk,Wk are given by the formulas

Vk(re
iθ;µ) := Jk(µr) cos kθ,

Wk(re
iθ;µ) :=

Jk(µ)J0(µ)

µJ1(µ)
rk+1

(
cos((k + 1)θ)
sin((k + 1)θ)

)
.

(3.5)

Proof. Let µ ∈ I and suppose that (v, w, γ) ∈ X lies in the kernel of L (µ), i.e.

∆v + µ2v = 0 in D, (3.6a)
v + Ur x · w = 0 on ∂D, (3.6b)

Urvr − Urrv + Urγ = 0 on ∂D. (3.6c)

If v ≡ 0, then Lemma 3.2 and (3.6c) immediately imply that w ≡ 0 and γ = 0 as well.
Suppose then that v 6≡ 0. From (3.6a) and familiar Fourier series arguments, it is enough to

consider the case where v = Vk for some k ≥ 0 which is an integer multiple of m. If k = 0, then
v = J0(µm) < 0 on ∂D, and so (3.6b) violates the solvability condition in Lemma 3.2. Thus we
can restrict our attention to k ≥ 1. By Lemma 3.2, the boundary condition (3.6b) can then be
uniquely solved for w, and an easy calculation confirms that this solution is w = Wk. Averaging
(3.6c) yields γ = 0.

Substituting v = Vk, w = Wk, and γ = 0 in (3.6c) and recalling (2.5), we are finally left with

UrVr − UrrV = − µ2

J0(µ)
W1,k(µ) cos kθ = 0 on ∂D,

where W1,k = J1J
′
k −JkJ

′
1 is the Wronskian from Lemma 1.1. Setting µ = µm, we have from the

same lemma that W1,m(µm) = 0, and moreover that W1,k(µm) < 0 for all integers k > m. The
proof is complete. �

Lemma 3.5. There are no solutions (v, w, γ) ∈ X to the equation

L (µm)(v, w, γ) + ∂µL (µm)(Vm( · ;µm),Wm( · ;µm), 0) = 0. (3.7)

Proof. To simplify the notation, we suppress the first arguments of the functions Vm,Wm defined
in (3.5). We have seen in the proof of Lemma 3.4 that, for any µ ∈ I, (Vm(µ),Wm(µ), 0) satisfies

L (µ)

 Vm(µ)
Wm(µ)

0

 = − µ2

J0(µ)
W1,m(µ)

 0
0

cosmθ

 .
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Differentiating this identity with respect to µ and using the fact that W1,m(µm) = 0, we find

L (µ)

 ∂µVm(µm)
∂µWm(µm)

0

+ ∂µL (µm)

 Vm(µm)
Wm(µm)

0

 =
µ2
m

J0(µm)
W ′

1,m(µm)

 0
0

cosmθ

 . (3.8)

Suppose now that (v, w, γ) ∈ X solves (3.7). Subtracting (3.8), we find

L (µ)

 v − ∂µVm(µm)
w − ∂µWm(µm)

γ

 = − µ2
m

J0(µm)
W ′

1,m(µm)

 0
0

cosmθ

 . (3.9)

By Lemma 1.1, W ′
1,m(µm) 6= 0. Arguing exactly as in the proof of Lemma 3.4, we conclude that

(3.9) has no solutions, and hence that the same is true for (3.7). �

Proof of Theorem 1.2. We apply Theorem 3.1 with F = F , X = X , Y = Y , and µ∗ = µm.
The hypotheses (a), (b), (c) have been verified in Lemmas 3.3, 3.4, and 3.5, respectively. Thus
there exists a family of solutions(

v(ε), w(ε), γ(ε), µ(ε)
)
∈ X × I

to (2.8), parameterized by ε ∈ (−ε0, ε0) and with the asymptotic expansions

v(ε) = εVm(µm) +O(ε2),

w(ε) = εWm(µm) +O(ε2),

γ(ε) = O(ε2),

µ(ε) = µm +O(ε)

as ε → 0. Here for notational convenience we are suppressing the first arguments of v, w, Vm,Wm.
The improved expansion µ(ε) = µm+O(ε2) for the parameter follows as usual from the symmetry
of F under rotations by an angle π/m; see for instance [Kie12, discussion leading to (I.14.41)].

These expansions in particular imply ‖w(ε)‖C2+α = O(ε) and so, perhaps after shrinking
ε0 > 0, the map φ(ε) = id + w(ε) is a C2+α diffeomorphism, and its image Ω(ε) := φ(D; ε) is a
C2+α domain. Thus, defining u(ε) ∈ C2+α(D) using (2.7), i.e.

u(ε) := ũ(ε) ◦ φ(ε)−1 where ũ(ε) := U(µ(ε)) + v(ε) +∇U(µ(ε)) · w(ε),

and defining c(ε) := Ur(1;µ(ε))−γ(ε) and λ(ε) := (µ(ε))2, we obtain the desired solutions of the
original problem (1.1) with b = 1. Here we must check, though, that we have chosen the correct
sign for c, since in passing from (1.1) to (2.8) we replaced (1.1c) with (2.1). If necessary, further
shrink ε0 > 0 so that c(ε) < 0 for all ε ∈ (−ε0, ε0). Inspecting the trivial solution at ε = 0, we
see that the sign of c(0) was indeed chosen correctly, and hence by a continuity argument that it
is correct for all ε ∈ (−ε0, ε0).

Finally, inserting the asymptotic expansions above into (2.7) using the explicit formulas in
(2.5) and (3.5) yields the claimed expansion (1.4), where here we have rescaled ε by a factor of
Jm(µm)J0(µm)/(µJ1(µm)) to simplify the form of (1.4a). �

4. Proof of Lemma 1.1

This final section is devoted to the proof of Lemma 1.1. First we introduce, for general integers
k, ` ≥ 0, the Wronskians

Wk,` := JkJ
′
` − J`J

′
k. (4.1)

As noted in [Pá13, Section 3.2], an immediate consequence of the differential equations (2.6)
satisfied by Jk, J` is that these Wronskians satisfy

d

dµ

(
µWk,`(µ)

)
=

`2 − k2

µ
Jk(µ)J`(µ). (4.2)

This suggests that the roots of Wk,` are closely related to the interlacing of the roots of Jk, J`;
see [Pá13, Lemma 5]. Since Lemma 1.1 concerns the roots of W1,m, we are therefore particularly
interested in understanding how the roots of J1 and Jm interlace.
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J1

JmµW1,m

j1,1 j1,2 jm,1µm

µ

Figure 2. Plots of J1(µ), Jm(µ), µW1,m(µ) for m = 4. Their roots satisfy the
inequalities j1,1 < µm < j1,2 < jm,1, and µW1,m is strictly decreasing on the
interval (j1,1, j1,2).

For integers m ≥ 0, let jm,1 < jm,2 < · · · denote the positive roots of Jm, all of which are
simple. Importantly, jm,n is a strictly increasing function of m for each n. From the numerical
values j3,1 ≈ 6.3802, j1,2 ≈ 7.0156, and j4,1 ≈ 7.5883, we see that j3,1 < j1,2 < j4,1, and so this
monotonicity implies

j1,2 < jm,1 for all m ≥ 4. (4.3)

The inequality (4.3) is the reason for the restriction m ≥ 4 in Lemma 1.1. Indeed, the result is
false for m = 0, 1, 2, 3.

Proof of Lemma 1.1. Fix an integer m ≥ 4. The functions J1, Jm vanish at the origin and are
positive for small positive arguments. This together with (4.3) gives the inequalities

J1 > 0 on (0, j1,1), J1 < 0 on (j1,1, j1,2), Jm > 0 on (0, j1,2),

J ′
1(j1,1) < 0 < J ′

1(j1,2)
(4.4)

illustrated in Figure 2. From the definition of W1,m we immediately conclude that

W1,m(0) = 0, W1,m(j1,1) > 0 > W1,m(j1,2), (4.5)

while (4.2) and (4.4) yield

(µW1,m)′ > 0 on (0, j1,1), (µW1,m)′ < 0 on (j1,1, j1,2). (4.6)

From (4.5) and (4.6) it is clear that W1,m has a root µm ∈ (j1,1, j1,2), that this root is simple,
and that there are no other roots in the interval (0, j1,2).

Next we show that µk < µm for k > m ≥ 4. By (4.2) and (4.4), the function µWk,m is strictly
decreasing on (0, j1,2), so that in particular Wk,m(µm) < 0. Using the algebraic identity

J1Wk,m − JkW1,m + JmW1,k = 0

and the fact that W1,m(µm) = 0, we therefore find

W1,k = − J1
Jm

Wk,m < 0 at µm.

Since (4.6) holds for m = k and W1,k(µk) = 0, we deduce that µk < µm as desired.
It remains to show that µm < j0,2. Since j0,1 < j1,1 < j0,2 < j1,2, this will in particular imply

that J0(µm) < 0. As µm is a decreasing function of m ≥ 4, it suffices to show µ4 < j0,2, and
arguing as above this is equivalent to the inequality W1,4(j0,2) < 0. Using a computer algebra
system we numerically calculate W1,4(j0,2) ≈ −0.012148 < 0, and the proof is complete. �

Acknowledgments. The author thanks Antonio J. Fernández and David Ruiz for helpful com-
ments on an earlier draft of this paper.
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