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Abstract

We consider exact nonlinear solitary water waves on a shear flow with an arbitrary distribu-
tion of vorticity. Ignoring surface tension, we impose a non-constant pressure on the free surface.
Starting from a uniform shear flow with a flat free surface and a supercritical wave speed, we
vary the surface pressure and use a continuation argument to construct a global connected set
of symmetric solitary waves. This set includes waves of depression whose profiles increase mono-
tonically from a central trough where the surface pressure is at its lowest, as well as waves of
elevation whose profiles decrease monotonically from a central crest where the surface pressure is
at its highest. There may also be two waves in this connected set with identical surface pressure,
only one of which is a wave of depression.
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1 Introduction

1.1 Informal discussion of results

We consider steady traveling waves in a two-dimensional, incompressible, inviscid fluid under the
influence of gravity. The fluid is bounded below by a horizontal bed and above by a free surface.
In addition to the usual kinematic boundary conditions, we impose a non-constant pressure on the
free surface which tends to a constant “atmospheric” value at infinity. Such a surface pressure can
be used, for instance, to model the influence of a ship. We consider the effect of surface tension to
be negligible.

Localized pressure disturbances on the free surfaces of uniform flows have been well-studied in
the linearized irrotational literature [Sto92, KMV02]. The effect of the disturbance depends on the
Froude number F , which is a dimensionless measure of the wave speed c. For supercritical Froude
numbers F > 1, the free surface is asymptotically flat at infinity. For subcritical Froude numbers
F < 1, on the other hand, there may be periodic behavior far upstream or downstream, though the
waves which are expected to occur in reality are only periodic downstream [Bea80].

In this paper, we construct nonlinear solitary waves with large amplitude under the assumption
that the Froude number is supercritical. We allow for an arbitrary distribution of vorticity; at
infinity these waves converge to a uniform shear flow whose horizontal velocity U is not necessarily
constant but may depend on the vertical variable y. Our definition of the Froude number for waves
with vorticity is given in (1.2). We also assume that both the free surface and surface pressure are
symmetric, and that the surface pressure has at most one local extremum. To find large-amplitude
waves, we start from a uniform shear flow and apply a degree-theoretic continuation argument in
which the surface pressure is varied while the asymptotic shear flow U(y) and Froude number F are
held fixed.

For small-amplitude waves, the relationship between the surface pressure and the height of the
free surface depends on the Froude number. William Thomson (Lord Kelvin) gives an elegant
account of this relationship in an 1887 lecture [Tho87]:

“Now to find mathematically the velocity of progression of a free wave, proceed thus. Take
your gutta-percha form [model ship hull] and hold it stationary on the surface of the water; the
water-pressure is less at the crest and greater at the hollow; by the law of hydrostatics, the deeper
down you go, the greater is the pressure. Move your form along very rapidly, and a certain result,
a centrifugal force, due to the inertia of the flowing water, will now cause the pressure to be
greatest at the crest and least at the lowest point of the hollow. Move it along at exactly the
proper speed, and you will cause the pressure to be equal all over the surface of the gutta-percha
form. We only had it in imagination. Having imagined it and got what we wanted out of it,
discard it when moving at exactly this proper speed, and then you have a free wave.”

For slower (subcritical) waves, we expect the surface pressure to be lower at crests and higher at
troughs. For the “very rapid” (supercritical) waves which we consider in this paper, however, we
expect the reverse: the surface pressure is higher at crests and lower at troughs (see Corollaries 2.5
and 2.6 for more precise statements).
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The waves that we construct fall into three categories. The first two, which always exist, are
solitary waves of elevation (depression) whose free surfaces decrease (increase) monotonically from
a central crest (trough), see Theorem 1.2. As for small-amplitude supercritical waves, the surface
pressures for these waves are higher at crests and lower at troughs. Under some assumptions on the
waves of elevation, including the existence of a nontrivial “free wave” with constant surface pressure,
there also exist waves of a third type, see Theorem 1.4. Some of these waves have the same surface
pressures as the waves of depression mentioned above, but unlike those waves of depression have one
or more tall crests. Analogues of these three types of solutions have been observed numerically for
a related problem [AVB94].

1.2 Statement of the main results

We denote the horizontal bed by y = 0 and the free surface by y = η(x, t). Fixing the constant wave
speed c > 0, we assume that the motion is steady in that the free surface η, velocity field (u, v), and
pressure P depend only on x− ct and y. Relabeling x− ct as x, (u, v) and P satisfy the stationary
Euler equations

(u− c)ux + vuy = −Px, (u− c)vx + vuy = −Py − g, ux + vy = 0, (1.1a)

in the fluid domain Dη = {(x, y) : −d < y < η(x)}, together with the usual kinematic boundary
conditions

v = 0 on y = 0, v = (u− c)ηx on y = η(x). (1.1b)

Ignoring the effect of surface tension, we also prescribe the pressure on the free surface,

P = Patm +R(x) on y = η(x). (1.1c)

Here R(x) vanishes as x → ±∞, but is not necessarily small, and represents the deviation of the
surface pressure from the (constant) atmospheric pressure Patm at x = ±∞. In the classical water
wave problem, R ≡ 0. We also impose asymptotic conditions

η → 0, v → 0, u→ U(y), as x→ ±∞, (1.1d)

uniformly in y, where U(y) is the horizontal velocity of the shear flow at x = ±∞. The requirement
that η vanish at infinity ensures that d is the asymptotic depth of the fluid.

Assuming that U(y) < c, we define the Froude number F by

1

F 2
= g

∫ 0

−d

dy

(c− U(y))2
. (1.2)

In this paper we will only consider supercritical Froude numbers F > 1. We assume further that
u < c throughout the fluid, which we call our no-stagnation assumption because it rules out the
existence of points (x, y), called stagnation points, where (u, v) = (c, 0). We will deal primarily with
symmetric waves, that is waves where u, η, and R are even in x while v is odd in x. We call a wave
trivial if η ≡ 0, v ≡ 0, and u ≡ U(y). A wave of elevation is one with η(x) > 0 for all x ∈ R, while
a wave of depression has η(x) < 0 for all x. We call a symmetric wave monotone if η and η′ have
opposite signs for x 6= 0. We call a wave a free wave if it has R ≡ 0.

For the purposes of continuation, we introduce a pressure parameter β ∈ R and consider a 1-
parameter family R = R(x;β) of surface pressures. A simple example is R(x;β) = βR0(x) where
R0 ∈ L1(R) is even, nonnegative, and monotone decreasing for x ≥ 0. More generally, R(x;β) is a
family of even functions with R(x; 0) ≡ 0 and

xβRx(x;β) ≤ 0, lim
β→+∞

R(0;β) = +∞,
∫

R
sup
|β|<M

|R(x;β)| dx <∞, (1.3)
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for any M > 0. Note that we make no assumptions about the behavior of R as β → −∞. One
physically meaningful choice would be for the surface pressure R(0;β) at the origin to tend to −∞;
another would be for the force

∫
RR(x;β) dx exerted by R on a flat free surface to tend to −∞.

To state our main results, we now fix the constants g, c, d > 0 and a Hölder parameter α ∈ (0, 1).
We fix a shear flow U ∈ C3+α[−d, 0] with maxU < c and F > 1, and also a 1-parameter family
R(x;β) as above with β 7→ R( · ;β) in C2(R, C2+α

b (R)). We then seek symmetric solutions

(β, u, v, η) ∈ R× C2+α
b (Dη)× C2+α

b (Dη)× C3+α
b (R)

of (1.1). Our first result is the following:

Theorem 1.1. The trivial solution (β, u, v, η) = (0, U, 0, 0) of (1.1) lies on a unique C2 curve of
solutions C1:

(u, v, η) = (u, v, η)(β), β− < β < β+, −∞ ≤ β− < 0 < β+ <∞, (1.4)

with the following properties. Solutions in C1 with β > 0 are monotone waves of elevation, those
with β < 0 are monotone waves of depression, and all solutions in C1 satisfy

g sup
x

∫ η(x)

−d

dy

(c− u(x, y))2
< 1. (1.5)

Moreover, as β → β+ along C1 either (1.5) tends to an equality or supDη u → c. As β → β− we
have the same two alternatives or else β− = −∞.

We call the possibility supDη u → c in Theorem 1.1 stagnation; it means there are waves in
C1 which come arbitrarily close to violating our assumption u < c. We make no claim that v is
simultaneously near 0. We do not give a physical interpretation of (1.5), but do note its similarity
to the definition (1.2) of the Froude number F . Indeed, the trivial solution (0, U, 0, 0) satisfies
(1.5) if and only if F > 1. If β− = −∞, then we have found solutions for all negative values of
β. The significance of these solutions depends on the behavior of R as β → −∞, which we have
not specified. In Appendix A.1, we consider an explicit family of solutions of (1.1) with constant
vorticity. This family includes sequences of waves of depression where the surface pressure R(0) at
the central trough tends to −∞ while the height η(0) + d of the trough above the bed tends to 0. It
also includes waves of elevation arbitrarily close to stagnation.

In our next result, we completely remove the restriction (1.5) and extend C1 to a possibly larger
connected set C−2 ∪ C +

2 of solutions. The monotonicity properties of C1 are preserved, but C±2 are
no longer necessarily curves. Along C +

2 there is also a new alternative: there exists a nontrivial free
wave in C +

2 , that is a wave with constant pressure P = Patm on its free surface.

Theorem 1.2. The set C−1 = C1 ∩ {β < 0} is contained in a connected set C−2 of monotone waves
of depression with β < 0 satisfying one of the two alternatives

(i−) (Stagnation) sup
C−2

sup
Dη

u = c; or

(ii−) (β large and negative) inf
C−2

β = −∞.

The set C +
1 = C1 ∩{β > 0} is contained in a connected set C +

2 of monotone waves of elevation with
β ≥ 0 satisfying one of the two alternatives

(i+) (Stagnation) sup
C+
2

sup
Dη

u = c; or

(ii+) (Free wave) There exists a solution other than (0, U, 0, 0) in C +
2 with β = 0.
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u = c

β
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u = c
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(a) (b)

β

η(0)
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3oscillation

(iii)

(iv)

(v)

Figure 1: (a) The alternatives in Theorem 1.2. (b) The alternatives in Theorem 1.4.

The various alternatives in Theorem 1.2 are illustrated in Figure 1a. Comparing Theorem 1.2
with Theorem 1.1, we see that the restriction (1.5) has been completely eliminated for C−2 , while
for C +

2 it is replaced by the new alternative (ii+). At least in some special cases, we expect that
alternative (i−) can be eliminated, leaving the single alternative (ii−) for C−2 . In Section 1.4 we give
a partial result in this direction: If the shear flow U satisfies certain conditions, then alternative (i−)
implies that the free surface becomes vertical along C−2 .

In our last result we consider what happens to the free wave in alternative (ii+) as β is decreased
below 0. It seems unlikely that it will remain monotone. One possibility is that the central crest
splits into two humps, and that along some sequence of solutions these humps translate to x = ±∞.
This behavior was observed numerically in [AVB94] for a related problem. To describe this and
similar situations we make the following definition:

Definition 1.3 (Oscillatory sequence). We call a sequence of symmetric solutions (βn, un, vn, ηn)
of (1.1) non-oscillatory if there exists M > 0 such that each vn does not change sign for x ≥ M .
Otherwise we call (βn, un, vn, ηn) oscillatory.

Note that, since v = (u− c)ηx on the free surface and u < c throughout the fluid, the sign of ηx
is determined by the sign of v on the free surface.

Theorem 1.4. Consider the same situation as in Theorem 1.2. Suppose that alternative (i+) does
not hold, so that C +

2 meets {β = 0}. Then C +
2 is contained in a bigger connected set C ?

3 of (possibly
non-monotone) solutions such that

(a) Some waves in C ?
3 have β < 0. The maximum heights d+ max η above the bottom of all waves

in C ?
3 ∩{β < 0} are bounded below by d∗. The depth d∗ is defined in Section 2.1, and is greater

than d. In particular, C ?
3 does not meet C−2 .

(b) One of the following three alternatives holds:

(iii) (Stagnation) sup
C ?3 \C+

2

sup
Dη

u = c; or

(iv) (β large and negative) inf
C ?3 \C+

2

β = −∞; or

(v) (Oscillation) C ?
3 \ C +

2 contains an oscillatory sequence (βn, un, vn, ηn).

Thus in Theorem 1.2, we can replace the single alternative (ii+) for C +
2 by the three alternatives

(iii), (iv), and (v) for C ?
3 , which are illustrated in Figure 1b. Notice in part (a) of the theorem that,

unlike waves in C−2 , waves in C ?
3 with β < 0 are not waves of depression. We remark that results

similar to Theorems 1.2 and 1.4 can be obtained by continuing from a nontrivial free wave (0, u, v, η)
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which is non-degenerate in the sense that the corresponding linearized operator is invertible. Such a
wave is guaranteed to exist when the Froude number F is sufficiently close to 1 [Whe, Hur08a, GW08].

We now compare the above results with [AVB94]. In that paper, Asavanant and Vanden-Broeck
numerically compute irrotational waves which have a parabolic obstacle with equation y = 1

2ε + y0

lying on their free surface. The points ±L/2 where the free surface separates from the obstacle are
additional unknowns in the problem. These waves will generally have non-constant surface pressure
R(x) for |x| < L/2, but this is not computed in the paper. In particular, we do not know if R
satisfies the monotonicity assumption in (1.3).

Asavanant and Vanden-Broeck identify three families of supercritical waves. Waves of the first
type have a concave object resting below the level of the free surface at infinity (ε > 0, y0 < 0).
From the figures they appear to be monotone waves of depression, and they approach uniform flows
as ε→ 0. Thus solutions of this first type are analogous to those in C−2 . Solutions of the second type
have a concave object resting above the level of the free surface at infinity (ε > 0, y0 > 0). As ε→ 0,
they do not approach uniform flows. Some of these solutions are perturbations of nontrivial flows
with ε = 0. Others have free surfaces with two ‘bumps’ surrounding a central ‘valley’. As ε→ 0, these
bumps translate to ±∞ without decreasing in amplitude, forming an oscillatory sequence according
to Definition 3.9. Thus waves of this second type are analogous to those in C ?

3 \ C +
2 . Finally, there

is a third type of solution, with a convex object resting above the level of the free surface at infinity
(ε < 0, y0 > 0). From the figures they appear to be monotone waves of elevation. Some of these
solutions are perturbations of a uniform flow, while others are perturbations of nontrivial flows with
ε = 0. Thus waves of this third type are analogous to those in C +

2 .
In 1980, Beale [Bea80] constructed exact small-amplitude subcritical waves with a pressure dis-

turbance as perturbations of a uniform flow. One of the main difficulties is the periodic behavior
downstream. Small-amplitude waves with a pressure disturbance and F slightly greater than 1
were constructed by Mielke [Mie86, Mie88] using spatial dynamics methods, and later by Sun and
Shen [SS93] as part of a rigorous two-parameter asymptotic expansion. These waves are related to
the celebrated KdV-type solitary water waves, and are found after rescaling the horizontal variable x.
In a series of papers Pagani and Pierotti constructed small-amplitude waves with a semi-submerged
object in the supercritical [PP99a, PP99b, PP00, PP01] and later subcritical [PP04] regimes. For a
semi-submerged object, the boundary condition changes type where the free surface separates from
the object, and these separation points are additional unknowns in the problem. The waves in all
of the above references are irrotational.

To the best of our knowledge, the only results concerning large-amplitude waves generated
by a non-constant surface pressure or semi-submerged object are numerical. Părău and Vanden-
Broeck [PVB02] computed flows due to localized pressure disturbances in water of infinite depth.
As in the subcritical case with finite depth, these waves are asymptotically periodic downstream.
Părău and Vanden-Broeck also explain how such a method can be used in an inverse way to compute
flows past a semi-submerged object. In [VBK89], Vanden-Broeck and Keller constructed solitary
waves of elevation with a flat “surfboard” riding on the free surface. Later, Asavanant and Vanden-
Broeck considered the more general case of parabolic objects [AVB94] discussed above. Again, the
waves in all of these references are irrotational.

Before giving an outline, we compare the current paper to [Whe], in which we constructed large-
amplitude solitary waves with R ≡ 0 and where F was allowed to vary. While in that paper the
local problem near F = 1 was one of the main sources of difficulty, in the current paper the local
problem (with F > 1 fixed) is relatively straightforward. On the other hand, in this paper the
global problem is more difficult, primarily because of conditions involving decay at infinity. For
solitary waves with constant surface pressure, the height of the free surface decays to its asymptotic
value at an exponential rate which depends on the Froude number [Hur08b]. Hur [Hur08b] used
these exponential asymptotics together with a moving planes argument to show symmetry and
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monotonicity under certain assumptions. In [Whe] we removed one of these assumptions, and used
the resulting monotonicity in our continuation argument in an essential way. However, with a non-
constant surface pressure, the free surface may not decay exponentially (see Appendix A.1 for an
example). To avoid placing unnecessary decay conditions on R, we prove monotonicity using a
different technique from [Whe]. The main tool is a new maximum principle for small-amplitude
waves or, more importantly, large-amplitude waves near infinity (Proposition 2.11). Using this
proposition, we are able to show monotonicity directly using simple maximum principle arguments,
as was done for the periodic problem [CS04].

Assumptions about decay also come into play when dealing with a compactness condition called
(local) properness necessary for the definition of a topological degree. In [Whe], we followed Volpert
and Volpert [VV03] and obtained local properness by working in weighted Hölder spaces of functions
decaying at infinity. These artificial weights then had to be eliminated to get to the final result. In
the current paper we avoid weights altogether; we instead obtain properness by simply restricting
the domain of the nonlinear operator to an appropriate open set (see Lemma 4.12). Using the same
technique, one could eliminate all mention of weights from the arguments in [Whe].

In Section 1.3, we use the Dubreil-Jacotin transformation [DJ34] to reformulate (1.1) as a quasi-
linear elliptic boundary value problem for a function w(q, p) in a fixed infinite strip. In Section 1.4,
we show that, under the extra assumption that the shear flow U is nondecreasing on the bed and
concave, alternative (i−) in Theorem 1.2 implies that the free surface becomes vertical along C−2 .

In Section 2 we consider the nodal properties of solutions, and give sufficient conditions for
solitary waves to be monotone waves of elevation or depression. We will use these properties later in
Section 4 to prove (non)compactness (Propositions 4.9 and 4.14) and also to differentiate between
the continua C±2 ,C

?
3 (Proposition 4.11). In Section 2.1, we show that waves with R ≥ 0 are waves of

elevation, while waves with R ≤ 0 are either waves of depression or have sufficiently large amplitude.
In Section 2.2, we investigate the slope η′ of the free surface for small-amplitude waves and also for
large-amplitude waves near infinity. The main result of this subsection, Proposition 2.11, seems new
and of interest even in the irrotational case with R ≡ 0. In Section 2.3, we use Proposition 2.11 to
show that certain nodal conditions are preserved along continua of solutions.

In Section 3 we focus on regularity and decay properties of (sequences of) solutions, generalizing
similar results in [Whe] to the case with R 6≡ 0. In Section 3.1 we show that ‖w‖C3+α can be
bounded in terms of ‖wp‖L∞ and ‖R‖C2+α , where here w(q, p) is the function defined in Section 1.3.
In Section 3.2 we introduce the flow force S(x) of a wave, and relate it to the surface pressure R(x).
In Section 3.3, we use identities for the flow force together with a translation argument to obtain
uniform decay estimates for bounded non-oscillatory sequences (see Definition 1.3).

In Section 4 we prove our main results, Theorems 1.1, 1.2, and 1.4 in the w, q, p variables
introduced in Section 1.3. In Section 4.1, we formulate (1.18) as a nonlinear operator equation in
a Banach space. We then state several lemmas from [Whe] concerning the associated linearized
operators. In Section 4.2, we prove Theorem 1.1 by combining these lemmas with monotonicity and
compactness results from Sections 2 and 3. In Section 4.3, we define the continua C±2 and C ?

3 , and
use results from Section 2 to analyze their nodal properties. We then apply a topological degree
argument to prove that neither C−2 nor C ?

3 is precompact. Finally, we use this non-compactness in
Section 4.4 to prove Theorems 1.2 and 1.4.

In Appendix A.1, we study a family of completely explicit solutions of (1.11) with constant
vorticity. This family includes monotone waves of elevation arbitrarily close to stagnation, as well as
sequences of monotone waves of depression where the surface pressure R(0) at the trough tends to
−∞. In Appendix A.2, we repeat a summary [CS04, Whe] of the key features of the Healey–Simpson
degree [HS98] for the reader’s convenience. In Appendix A.3, we give several slight variations of
standard facts about elliptic problems in infinite strips, mostly without proof.
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1.3 Reformulation

Let Ω ⊂ Rn be a domain, possibly unbounded. We say that ϕ ∈ C∞c (Ω) if ϕ ∈ C∞(Ω) and the
support of ϕ is a compact subset of Ω. Similarly ϕ ∈ C∞c (Ω) if ϕ ∈ C∞(Ω) and the support of ϕ is
a compact subset of Ω. Let k be a nonnegative integer and α ∈ [0, 1). We say that u ∈ Ck+α(Ω)
if ‖ϕu‖Ck+α(Ω) < ∞ for all ϕ ∈ C∞c (Ω), and similarly u ∈ Ck+α(Ω) if ‖ϕu‖Ck+α(Ω) < ∞ for all

ϕ ∈ C∞c (Ω). If ‖u‖Ck+α(Ω) < ∞, we say u ∈ Ck+α
b (Ω) (the suprema in the definition of the norm

range over all of Ω). We say that un → u in Ck+α
loc (Ω) if ‖ϕ(un − u)‖Ck+α(Ω) → 0 for all ϕ ∈ C∞c (Ω).

Finally, we define

Ck+α
0 (Ω) =

{
u ∈ Ck+α

b (Ω) : lim
r→∞

sup
|x|=r
|D`u(x)| = 0 for 0 ≤ ` ≤ k

}

which is a Banach space under the Ck+α
b (Ω) norm.

Let U(y) be the asymptotic shear flow fixed in Section 1.2 and let d be the asymptotic depth.
We define the Bernoulli constant λ, “total head” Q, and flux m in terms U(y) and d by

λ = (c− U(0))2, Q =
λ

2
+ gd, m =

∫ 0

−d
(c− U(y)) dy. (1.6)

Since U < c, the flux m is positive. By incompressibility (ux+vy = 0) there exists a stream function
ψ defined up to an additive constant by

ψx = −v, ψy = u− c.
The kinematic boundary conditions (1.1b) imply that ψ is constant on the bottom y = 0 and also
on the free surface y = η(x). In particular, the difference

ψ(x,−d)− ψ(x, η(x)) = −
∫ η(x)

−d
ψy(x, y) dy =

∫ η(x)

−d
(c− u(x, y)) dy

is independent of x. Sending x→∞ we deduce that this difference is the flux m; we normalize ψ so
that ψ = 0 on the free surface and ψ = m on the bottom.

Thanks to our no-stagnation assumption that

u− c = ψy < 0 (1.7)

throughout the fluid, the vorticity ω satisfies

ω = vx − uy = −∆ψ = γ(ψ)

for some function γ called the vorticity function [CS04]. From the asymptotic conditions (1.1d), we
see that γ is defined in terms of U via

γ(Ψ(y)) = −Uy(y), where Ψ(y) =

∫ y

0
(U(y′)− c) dy′. (1.8)

Squaring both sides and integrating, we obtain

c− U(y) =
√
λ+ 2Γ(−Ψ(y)), (1.9)

where Γ is the antiderivative

Γ(p) =

∫ p

0
γ(−s) ds

of γ.
The Euler equations imply that

E = 1
2 |∇ψ|2 + gy + P − Γ(−ψ)

8



is constant throughout the fluid. In particular, evaluating E at x = ±∞ and y = 0, we have

1
2 |∇ψ|2 + gy + P − Γ(−ψ) ≡ 1

2λ
2 + gd+ Patm. (1.10)

Putting this all together and recalling that P = Patm +R(x) on y = η(x), we find that ψ solves

∆ψ = −γ(ψ) in − d < y < η(x), (1.11a)

ψ = m on y = −d, (1.11b)

ψ = 0 on y = η(x), (1.11c)
1
2 |∇ψ|2 + gη = λ

2 −R on y = η(x), (1.11d)

together with the asymptotic conditions

η → 0, ψx → 0, ψy → U(y)− c, as x→ ±∞, (1.11e)

uniformly in y.
We now perform the Dubreil-Jacotin transformation [DJ34]. Since ψy < 0 throughout the fluid

by (1.7), we can use

q = x, p = −ψ,
as independent variables. This transforms the fluid domain Dη into the fixed infinite strip

Ω := {(q, p) ∈ R2 : −m < p < 0}.
The top boundary T = {p = 0} of Ω corresponds to the free surface {y = η(x)}, and the bot-
tom boundary B = {p = −m} corresponds to the horizontal bed {y = 0}. Choosing the height
h(q, p) = y+ d above the bed as the new dependent variable, we can recover the velocity field (u, v)
and free surface η via

c− u(q, h(q, p)) =
1

hp(q, p)
, v(q, h(q, p)) = −hq(q, p)

hp(q, p)
, η(q) = h(q, 0)− d. (1.12)

We call h the height function. Note that our assumption that u < c implies hp > 0 and

sup
Dη

(u− c) = −‖hp‖−1
L∞(Ω).

The height function h solves [CS04, CS11]

(
−

1 + h2
q

2h2
p

+ Γ
)
p

+
(hq
hp

)
q

= 0 in Ω, (1.13a)

1 + h2
q

2h2
p

+ gh =
λ

2
+ gd−R on T, (1.13b)

h = 0 on B, (1.13c)

together with the asymptotic condition

lim
q→±∞

h(p, q) = H(p) :=

∫ p

−m

ds√
λ+ 2Γ(s)

, lim
q→±∞

Dh(p, q) = DH(p), (1.13d)

uniformly in p. Here h(q, p) = H(p) corresponds the laminar flow (u, v, η) = (U, 0, 0), as can be seen
using (1.9) and (1.12). We observe that the regularity U ∈ C3+α[−d, 0] implies

γ ∈ C2+α[0,m], Γ ∈ C3+α[−m, 0], H ∈ C4+α[−m, 0].

See [CS04] for the details of the equivalence between (1.13) and (1.1); they only deal with R ≡ 0,
but the arguments remain unchanged for R 6≡ 0.
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Next we consider the Froude number F . From

1

F 2
= g

∫ 0

−d

dy

(c− U(y))2
= g

∫ 0

−m
H3
p (p) dp = g

∫ 0

−m

dp

(λ+ 2Γ(p))3/2
(1.14)

we see that our assumption F > 1 is equivalent to λ > λcr, where λcr is the solution of

g

∫ 0

−m

dp

(λcr + 2Γ(p))3/2
= 1. (1.15)

Such a λcr exists and is unique since the right hand side of (1.14) is decreasing in λ, tends to 0 as
λ→∞, and tends to ∞ as λ→ −2 min−m<p<0 Γ(p). Expressing d = H(0) in terms of m, γ, λ,

d =

∫ 0

−m

dp√
λ+ 2Γ(p)

, (1.16)

we see that F > 1 is also equivalent to d < dcr, where dcr is defined in terms of λcr by

dcr =

∫ 0

−m

dp√
λcr + 2Γ(p)

. (1.17)

We ultimately formulate (1.1) in terms of the difference

w := h−H
between the height function h(q, p) and its asymptotic valueH(p) at q = ±∞. Note that η(q) = w(q, 0).
Rewriting (1.13a)–(1.13c) in terms of w, we have

(
−

1 + w2
q

2(Hp + wp)2
+ Γ

)
p

+
( wq
Hp + wp

)
q

= 0 in Ω, (1.18a)

1 + w2
q

2(Hp + wp)2
+ gw =

λ

2
−R on T, (1.18b)

w = 0 on B. (1.18c)

The assumptions infDη u > −∞ and supDη u < c in the original variables are equivalent to

inf
Ω

(Hp + wp) > 0, (1.18d)

and we enforce the asymptotic condition (1.13d) by requiring

w ∈ C3+α
b (Ω) ∩ C2

0 (Ω). (1.18e)

We will also usually assume

w is even in q, (1.18f)

in which case w represents a symmetric wave.
We emphasize that here, as in the rest of the paper, the asymptotic shear flow U and depth d

are held fixed. Thus γ,Γ, λ,m,H,Q, F are all also fixed. In Sections 2.1, 3.2, and 3.3, we will need
to make reference to other asymptotic shear flows with the same vorticity function γ and flux m,
but different Bernoulli constants, depths, and heads. To avoid confusion, we will always denote the
Bernoulli constants, depths, and heads of these flows by λ̂, d̂, and Q̂.
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1.4 The case of concave asymptotic shear

As mentioned in Section 1.2, we expect that alternative (i−) in Theorem 1.2, that waves in C−2
approach stagnation, can be eliminated, perhaps under additional assumptions on the asymptotic
shear flow U . This expectation is based on a comparison with numerical results [AVB94], and also on
the simple observation that if the free surface η were held constant, then a negative surface pressure
R in (1.11d) would act to increase the relative speed

√
(c− u)2 + v2 on the free surface.

In this section, we consider the case where the shear flow U is nondecreasing at the bed and
concave. Under this extra assumption, we show that, if alternative (i−) of Theorem 1.2 holds, then
the free surface η must also become vertical along C−2 .

Proposition 1.5. Consider the same situation as in Theorem 1.2, and suppose that the asymptotic
shear flow U satisfies U ′′(y) ≤ 0 for −d < y < 0 and U ′(−d) ≥ 0. If alternative (i−) holds for C−2 ,
then

sup
C−2

‖η′‖L∞ =∞.

Note that Proposition 1.5 applies to the irrotational case γ ≡ 0 as well as the case of constant
vorticity γ < 0. Since by Theorem 1.2 we have R ≤ 0 and η ≤ 0 along C−2 , Proposition 1.5 is an
immediate consequence of the following lemma, which is proved using the maximum principle and
Hopf lemma in the physical variables (x, y).

Lemma 1.6. Let u, v, η solve (1.1) with supDη u < c, and suppose that R+gη ≤ 0. If the asymptotic
shear flow U satisfies U ′′(y) ≤ 0 for −d < y < 0 and U ′(−d) ≥ 0, then

sup
Dη

(u− c) ≤ max

{
sup
−d<y<0

(U(y)− c), U(0)− c
(1 + ‖η′‖2L∞)1/2

}
. (1.19)

Proof. Defining the vorticity function γ(ψ) as in Section 1.3, our assumptions on U imply γ′ ≤ 0 and
γ(m) ≤ 0. Differentiating (1.11a) with respect to x, we see that u− c satisfies the elliptic equation

∆(u− c) = −γ′(ψ)(u− c)
to which the maximum principle applies. On the bed y = −d we have

uy = vx − γ(m) = −γ(m) ≥ 0,

so u cannot achieve its maximum there by the Hopf lemma. On the free surface, we have

λ

2
=

(u− c)2 + v2

2
+R+ gη =

1 + (η′)2

2
(u− c)2 +R+ gη.

Rearranging and using R+ gη ≤ 0, we obtain

c− u =

(
λ− 2R− 2gη

1 + (η′)2

)1/2

≥
(

λ

1 + ‖η′‖2L∞

)1/2

≥ c− U(0)

(1 + ‖η′‖2L∞)1/2
on y = η(x).

The statement then follows by applying the maximum principle Lemma A.14.
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2 Elevation, depression, and monotonicity

In this section we will consider nodal properties of solitary waves. We will later use these properties in
Section 4.3 to distinguish the continua C±2 ,C

?
3 appearing in Theorems 1.2 and 1.4 (Proposition 4.11).

This is typical for global continuation/bifurcation problems [Kie04]. More importantly, however, as
in [Whe] (but unlike in the periodic case) we will use nodal properties again in Section 4.3 when
dealing with (non)compactness in Proposition 4.14 (also see Proposition 4.9). In Section 2.1, we
will show that the possible heights of crests and troughs are restricted by the sign of the surface
pressure R: waves with R ≥ 0 are waves of elevation, while waves with R ≤ 0 are either waves of
depression or have a sufficiently tall crest. With R ≡ 0, these reduce to results contained in [Whe].
The main result of Section 2.2, Proposition 2.11, asserts that small-amplitude waves inherit the
monotonicity of their surface pressures R, and seems new and of interest even in the irrotational
case with R ≡ 0. Proposition 2.11 can also be applied to large-amplitude waves near x = ±∞, which
we will do in Section 2.3 to show that certain nodal properties are both open an closed conditions in
C3

b(Ω)∩C1
0 (Ω). Throughout this section our basic tools will be the maximum principles Lemma A.14

and Lemma A.15.
Because it is more natural, we will state the results in this section in terms of an arbitrary surface

pressure R(q) rather than a 1-parameter family R(q;β).

2.1 Crests and troughs

We now introduce a one-parameter family of shear flows with the same flux m and vorticity function
γ as U , but with different Bernoulli constants λ̂, asymptotic depths d̂, and total heads Q̂. The
corresponding height functions are

Ĥ(p) = Ĥ(p; λ̂) =

∫ p

−m

ds

(λ̂+ 2Γ(s))1/2
, (2.1)

with d̂ = Ĥ(0; λ̂). Setting Γmin = min−m<p<0 Γ, Ĥ is well-defined for λ̂ > −2Γmin and possibly also

for λ̂ = −2Γmin. The results in this section are based on the following lemma:

Lemma 2.1. For the shear flows with height function Ĥ(p) = Ĥ(p; λ̂) given by (2.1),

(a) The Bernoulli constant λ̂ is a strictly decreasing and strictly convex function λ̂ = λ̃(d̂) of the
asymptotic depth d̂ ∈ (0, dm), with λ̂→∞ as d̂→ 0 and λ̂→ −2Γmin as d̂→ dm. Here

dm := lim
λ̂↓−2Γmin

∫ 0

−m

dp

(λ̂+ 2Γ(p))1/2
≤ +∞. (2.2)

(b) The total head Q̂ is a strictly convex function Q̂ = Q̃(d̂) of the asymptotic depth d̂ ∈ (0, dm),
with a unique minimum at d̂ = dcr.

Proof. Expressing d̂ as a function d̃(λ),

d̂ = d̃(λ) := Ĥ(0; λ̂) =

∫ 0

−m

dp

(λ̂+ 2Γ(p))1/2
,

we have by definition that d̃(λ̂) → dm as λ̂ → −2Γmin. Differentiating under the integral, we easily
check that d̃ is a strictly decreasing and strictly convex function of λ̂ ∈ (−2Γmin,∞). Thus it has a
unique inverse λ̂ = λ̃(d̂), defined for d̂ ∈ (0, dm), which is also strictly decreasing and strictly convex.
Indeed, we compute

λ̃′(d̂) = −2

(∫ 0

−m

ds
(
λ̃(d̂) + 2Γ(s)

)3/2
)−1

. (2.3)
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d̂

Q̂

dmdcrd d∗

Q

Q̂ = Q̃(d̂)

Figure 2: The curve Q̂ = Q̃(d̂) and depths 0 < d < dcr < d∗ ≤ dm ≤ ∞.

Writing

Q̂ = Q̃(d̂) := 1
2 λ̃(d̂) + gd̂,

we therefore also have that Q̃ is a strictly convex function of d̂ ∈ (0, dm). Differentiating, we find

Q̃′(d̂) =
1

2
λ̃′(d̂) + g = −

(∫ 0

−m

ds

(λ̃(d̂) + 2Γ(s))3/2

)−1

+ g

and hence that Q̃ achieves its unique minimum at d̂ = dcr, where dcr was defined in (1.17).

Since our assumption that F > 1 is equivalent to d < dcr, the convexity of Q̃ implies that there
exists at most one d∗ with dcr < d∗ < dm and

Q̃(d∗) = Q̃(d). (2.4)

This allows us to make the following definition:

Definition 2.2 (The depth d∗). If (2.4) has a (necessarily unique) solution, we denote it by d∗.
Otherwise we set d∗ = dm.

See Figure 2 for a graphical depiction of the depths d, d∗, dcr, dm. In the case of constant vorticity
γ, Q̃ and dm can be computed explicitly,

Q̃(d̂) =
1

2

(m
d̂
− d̂γ

2

)2
+ gd̂, dm =

∣∣∣∣
2m

γ

∣∣∣∣
1/2

, (2.5)

where dm = +∞ in the irrotational case γ ≡ 0.
We note that the following two lemmas remain true (with identical proofs) if we drop our usual

assumption that the Froude number is supercritical.

Lemma 2.3 (Pressure at a trough). Let w ∈ C2
b(Ω) ∩ C0

0 (Ω) be a nontrivial solution of (1.18a)–
(1.18d) and suppose that the corresponding free surface η(q) = w(q, 0) achieves its minimum value
ηmin = η(q0) ≤ 0. Then

R(q0) < Q̃(d)− Q̃(d+ ηmin). (2.6)

Proof. The idea of the proof is to use Ĥ(p; λ̂) as a comparison function and then apply the Hopf
lemma. For convenience set h = H + w, and let

d̂ = d+ ηmin = h(q0, 0)
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be the depth of the fluid at q0. From (1.18d) we have infΩ hp > 0 and hence d̂ > 0, and on the

other hand ηmin ≤ 0 implies d̂ ≤ d < dm. By Lemma 2.1(a), there therefore exists λ̂ ≥ λ such that
H(0; λ̂) = d̂. Abbreviating Ĥ(p) = Ĥ(p; λ̂), we set

ϕ = h− Ĥ.
A direct computation shows that ϕ satisfies

(1 + h2
q)ϕpp − 2hphqϕpq + h2

pϕqq + b1ϕq + b2ϕp = 0 (2.7)

in Ω, where

b1 = γ(3Ĥ2
p + 3Ĥpϕp + ϕ2

p), b2 = −γĤ3
pϕq.

We observe that (2.7) is a uniformly elliptic equation for ϕ; indeed the coefficients satisfy

(1 + h2
q)h

2
p − (hphq)

2 = h2
p > 0

uniformly in Ω. Since λ̂ ≥ λ, the formulas for Ĥ(p) and H(p) also give

lim
|q|→∞

ϕ(q, p) = H(p)− Ĥ(p) ≥ 0,

uniformly in p. Since ϕ = 0 on B and ϕ = η − ηmin ≥ 0 on T , the maximum principle Lemma A.14
therefore implies ϕ > 0 in Ω. Applying the Hopf lemma at (q0, 0) then yields

ϕp(q0, 0) = hp(q0, 0)− 1√
λ̂
< 0.

Combining this with the boundary condition (1.13b) we have

λ̂

2
+ g(d̂− d) <

1

2hp(q0, 0)2
+ g(h(q0, 0)− d) =

λ

2
−R(q0),

and hence

R(q0) < (1
2λ+ gd)− (1

2 λ̂+ gd̂) = Q̃(d)− Q̃(d+ ηmin)

as desired.

Lemma 2.4 (Pressure at a crest). Let w ∈ C2
b(Ω) ∩ C0

0 (Ω) be a nontrivial solution of (1.18a)–
(1.18d) and suppose that the corresponding free surface η(q) = w(q, 0) achieves its maximum value
ηmax = η(q0) < dm − d. Then

R(q0) > Q̃(d)− Q̃(d+ ηmax). (2.8)

Proof. We use the same argument as in the proof of Lemma 2.3. For convenience set h = H + w,
and let

d̂ = d+ ηmax = h(q0, 0)

be the depth of the fluid at q0. By assumption d ≤ d̂ < dm, so by Lemma 2.1(a) there exists
−2Γmin < λ̂ ≤ λ such that Ĥ(0; λ̂) = d̂. Abbreviating Ĥ(p) = Ĥ(p; λ̂), we have as in the proof of
Lemma 2.3 that ϕ := h−Ĥ solves the elliptic equation (2.7) in Ω. Since ϕ = 0 on B, ϕ = η−ηmax ≤ 0
on T , and lim|q|→∞ ϕ(q, p) ≤ 0, Lemma A.14 implies ϕ < 0 in Ω. Applying the Hopf lemma at (q0, 0)
then yields

ϕp(q0, 0) = hp(q0, 0)− 1√
λ̂
> 0.

Combining this with the boundary condition and rearranging, we have

R(q0) < (1
2 λ̂+ gd̂)− (1

2λ+ gd) = Q̃(d)− Q̃(d+ ηmin)
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as desired.

Corollary 2.5 (Elevation). All nontrivial (supercritical) solitary waves with R ≥ 0 are waves of
elevation. More precisely, if w solves (1.18a)–(1.18d) with R ≥ 0, then w > 0 in Ω∪T unless w ≡ 0.

Proof. Let w 6≡ 0 solve (1.18a)–(1.18d) with R ≥ 0, and suppose for contradiction that η(q) = w(q, 0)
achieves its minimum ηmin = η(q0) ≤ 0. By Lemma 2.3 and the nonnegativity of R, we have

0 ≤ R(q0) < Q̃(d)− Q̃(d+ ηmin).

Now by supercriticality d < dcr, so in particular d + ηmin < dcr. But by Lemma 2.1(b), Q̃(d̃) is
decreasing for 0 < d̂ < dcr, so Q̃(d) ≤ Q̃(d + ηmin), a contradiction. Thus w > 0 on T . Since
ϕ = w ∈ C2

b(Ω) ∩ C0
0 (Ω) also vanishes on B and satisfies the uniformly elliptic equation (2.7) with

Ĥ = H, the maximum principle Lemma A.14 then implies w > 0 in Ω.

Corollary 2.6 (Depression). All nontrivial (supercritical) solitary waves with R ≤ 0 and
d + supR η < d∗ are waves of depression. More precisely, suppose w solves (1.18a)–(1.18d) with
R ≤ 0. If supT w < d∗ − d, then w < 0 on Ω ∪ T unless w ≡ 0.

Proof. Let w 6≡ 0 solve (1.18a)–(1.18d) with R ≤ 0, and suppose for contradiction that η(q) = w(q, 0)
achieves its maximum ηmax = η(q0) < d∗ − d. By Lemma 2.4 and the nonnegativity of R, we have

0 ≥ R(q0) > Q̃(d)− Q̃(d+ ηmax). (2.9)

Now by assumption d ≤ d+ ηmax < d∗, and the convexity of Q̃ (Lemma 2.1(b)) and definition of d∗

imply that Q̃(d̂) ≤ Q̃(d) for d < d̂ < d∗. Thus Q̃(d + ηmax) ≤ Q̃(d), contradicting (2.9). Therefore
w < 0 on T . Since ϕ = w ∈ C2

b(Ω) ∩ C0
0 (Ω) also vanishes on B and satisfies the uniformly elliptic

equation (2.7) with Ĥ = H, the maximum principle Lemma A.14 implies w < 0 in Ω.

2.2 Monotonicity

In this section we will prove several facts about the relationship between the sign of wq (which
determines the sign of the slope η′ of the free surface) and the pressure disturbance R. The most
important of these is Proposition 2.11. The idea in all of the proofs is to write w = v/Φ for some
function Φ(p) and then show that v satisfies a linear equation to which the Hopf-type maximum
principle Lemma A.15 applies.

We being by considering the linear problem
(wp
H3
p

)
p

+
(wq
Hp

)
q

= 0 in Ω, (2.10a)

wp
H3
p

− gw = R on T, (2.10b)

w = 0 on B, (2.10c)

obtained by linearizing (1.18a)–(1.18c) about w = 0. A version of the following lemma was proven
by Craig and Sternberg [CS88] in the irrotational case using Green’s functions and the calculus of
residues. Here we give a different proof in our more general setting which has the virtue of depending
only on the strong maximum principle and the Hopf lemma.

Lemma 2.7. Suppose that w ∈ C2
b(Ω) ∩ C0

0 (Ω) solves the linearized equation (2.10) with R ≥ 0.
Then w > 0 in Ω ∪ T unless w ≡ 0.
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Proof. Because of the signs of the coefficients in (2.10b), we cannot apply Lemma A.15 directly to
(2.10). Instead we will make the change of dependent variable

v(q, p) =
w(q, p)

Φ(p)
, Φ(p) =

∫ p

−m
H3
p (s) ds+ ε,

where ε > 0 is a constant to be determined. Since Φ is uniformly bounded away from 0, we easily
check that v ∈ C2

b(Ω) ∩ C0
0 (Ω), and that it suffices to show v > 0 in Ω ∪ T . Looking at (1.14), we

see that F > 1 implies g
∫ 0
−mH

3
p dp < 1, so we can fix ε small enough that

gΦ(0) < 1. (2.11)

On T we then calculate

R =
wp
H3
p

− gw =
Φ

H3
p

vp + (1− gΦ)v, (2.12)

where the coefficients in front of vp and v in (2.12) are now both positive thanks to (2.11). Since v
vanishes on B and satisfies the uniformly elliptic equation

( Φ

H3
p

vp

)
p

+
( Φ

Hp
vq

)
q

+ vp = 0 (2.13)

in Ω, Lemma A.15 implies v > 0 in Ω ∪ T , and hence w > 0 in Ω ∪ T .

Our proof of Lemma 2.7 extends to small-amplitude solutions of the full nonlinear equation
(1.18). To perform the extension, we first make a slightly more complicated choice of the function
Φ(p):

Lemma 2.8. There exists ε > 0 such that the function

Φ(p) =
(
ε+

∫ p

−m
H3
p (s) ds

)1−ε

satisfies
(Φp

H3
p

)
p
< 0 on [−m, 0], Φ > 0 on [−m, 0],

(Φp

H3
p

− gΦ
)

(0) > 0. (2.14)

Proof. That Φ > 0 on [−m, 0] for any ε > 0 is clear from the definition. Computing

Φp = (1− ε)H3
p

(
ε+

∫ p

−m
H3
p (s;λ) ds

)−ε

we see that, if 0 < ε < 1,
(Φp

H3
p

)
p

= −ε(1− ε)H3
p

(
ε+

∫ p

−m
H3
p (s) ds

)−1−ε
< 0 for p ∈ [−m, 0].

Finally, we observe that

Φp

H3
p

(0)− gΦ(0) = (1− ε)
(
ε+

∫ 0

−m
H3
p (s) ds

)−ε
− g
(
ε+

∫ 0

−m
H3
p (s) ds

)1−ε

depends continuously on ε near 0 and is 1− g
∫ 0
−mH

3
p dp = 1− F−2 > 0 when ε = 0.

The proof of Proposition 2.11 is based on the proof of Lemma 2.9 below. We note that a much
stronger version of Lemma 2.9 has already been proved using different methods in Corollaries 2.5
and 2.6.

Lemma 2.9. There exists δ > 0 such that the following holds. Let w ∈ C2
b(Ω)∩C0

0 (Ω) be a solution
of (1.18a)–(1.18d) with w 6≡ 0 and ‖w‖C1(Ω) < δ. Then
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(a) If R ≥ 0, then w > 0 in Ω ∪ T .

(b) If R ≤ 0, then w < 0 in Ω ∪ T .

Proof. Setting h = H + w for convenience, we first rewrite (1.18a)–(1.18b) in the non-divergence
form

(1 + h2
q)wpp − 2hphqwpq + h2

pwqq + (1 + h2
q)Hpp + γ(Hp + wp)

3 = 0 in Ω, (2.15)

−
w2
q

2H2
p

+
(1 + w2

q)(wp + 2Hp)

2H2
ph

2
p

wp − gw = R on T. (2.16)

Letting Φ(p) be the function guaranteed by Lemma 2.8, we then define

v =
w

Φ
∈ C2

b(Ω) ∩ C0
0 (Ω),

and observe that v vanishes on B. Since Φ > 0, we will be done if we can prove (a) and (b) with w
replaced by v. Substituting w = Φv in (2.15)–(2.16) we find

Φ(1 + hq)
2vpp − 2Φhqhpvqp + Φh2

pvqq + bvp + cv = r1 in Ω, (2.17)

dvp + fv = R+ r2 on T, (2.18)

where the coefficients b, c, d, f are given by

b = 3γH2
pΦ + 2Φp, c = H3

p

(Φp

H3
p

)
p
, d =

Φ

H3
p

, f =
Φp

H3
p

− gΦ, (2.19)

and the remainder terms r1, r2 are rational expressions satisfying

ri = O(v2
q + v2

p + v2) as (vq, vp, v)→ 0, i = 1, 2. (2.20)

Since Φ is bounded away from zero, (1.18d) guarantees that (2.17) is a uniformly elliptic equation
for v. By (2.14), the coefficients satisfy c < 0 and d, f > 0.

We can also easily regroup terms so that r1, r2 are absorbed into the coefficients, transforming
(2.17)–(2.18) into

Φ(1 + hq)
2vpp − 2Φhqhpvqp + Φh2

pvqq + b̃1vq + b̃2vp + c̃v = 0 in Ω, (2.21)

d̃1vq + d̃2vp + f̃v = R on T, (2.22)

with b̃1, b̃2, c̃ ∈ C1
b(Ω) and d̃1, d̃2, f̃ ∈ C1

b(T ). Thanks to the bounds (2.20) on r1, r2, for ‖w‖C1(Ω) suf-

ficiently small, these modified coefficients will still have c̃ < 0 and d̃2, f̃ > 0. Applying Lemma A.15,
we then obtain v > 0 in Ω ∪ T if R ≥ 0 and v < 0 in Ω ∪ T if R ≤ 0.

Differentiating the equations with respect to q, we now obtain analogues of Lemmas 2.7 and 2.9
for wq. These are most naturally stated in the half-infinite strip

Ω+ = {(q, p) : q > 0, −m < p < 0}, (2.23)

with top, bottom, and left boundary portions

T+ = {(q, 0) : q > 0}, B+ = {(q,−m) : q > 0}, L+ = {(0, p) : −m < p < 0}. (2.24)

Lemma 2.10. Suppose that w ∈ C3
b(Ω+) ∩ C1

0 (Ω+) solves the linearized equation (2.10). If wq ≤ 0
on L+ and Rq ≥ 0 on T+, then wq < 0 in Ω+ ∪ T+ unless w ≡ 0.

Proof. Define Φ, v as in the proof of Lemma 2.7, and consider the function

u = vq ∈ C2
b(Ω+) ∩ C0

0 (Ω+).
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Since wq = Φu and Φ > 0, it is enough to show that u has the appropriate sign on Ω+∪T+. Because
the coefficients in (2.10) are independent of q, u solves the same uniformly elliptic equation (2.13)
as v does (though of course only in Ω+), together with

Φ

H3
p

up + (1− gΦ)u = Rq ≤ 0 on T+ (2.25)

and u = 0 on B+. By assumption wq ≤ 0 on L+, so we also have u ≤ 0 on L+ and hence u ≤ 0
on ∂Ω+ \ T+. As in the proof of Lemma 2.7, the coefficients in front of up and u in (2.25) are both
positive, so the statement now follows from Lemma A.15.

We now come to the most important result of this section, which concerns monotonicity properties
of solutions to the nonlinear equation.

Proposition 2.11. There exists δ > 0 such that the following holds. Let w ∈ C3
b(Ω+) ∩ C1

0 (Ω+) be
a solution of (1.18a)–(1.18d) with w 6≡ 0 and ‖w‖C2(Ω) < δ. Then

(a) If wq ≤ 0 on L+ and Rq ≤ 0 on T+, then wq < 0 in Ω+ ∪ T+.

(b) If wq ≥ 0 on L+ and Rq ≥ 0 on T+, then wq > 0 in Ω+ ∪ T+.

Proof. Define Φ, v as in the proof of Lemma 2.9, and set u = vq ∈ C2
b(Ω+) ∩ C0

0 (Ω+). As in the
proof of Lemma 2.10, it is enough to show that u has the appropriate sign on Ω+ ∪ T+. Note that
u vanishes on B+. Differentiating (2.17)–(2.18) yields

Φ(1 + hq)
2upp − 2Φhqhpuqp + Φh2

puqq + bup + cu = r3 in Ω, (2.26)

dup + fu = Rq + r4 on T, (2.27)

where c < 0 and d, f > 0 are given by (2.19) and the remainder terms r3, r4 are rational expressions
satisfying

ri = O
(

(|v|+ |vq|+ |vp|)(|vq|+ |vqq|+ |vqp|)
)

as (v, vq, vp, vqq, vqp)→ 0, i = 3, 4. (2.28)

As in the proof of Lemma 2.9, we can absorb r3, r4 into the definitions of the coefficients, getting

Φ(1 + hq)
2upp − 2Φhqhpuqp + Φh2

puqq + b̃1uq + b̃2up + c̃u = 0 in Ω+, (2.29)

d̃1uq + d̃2up + f̃u = Rq on T+, (2.30)

where b̃1, b̃2, c̃ ∈ C1
b(Ω+) and d̃1, d̃2, f̃ ∈ C1

b(T+). The first equation (2.29) is a uniformly elliptic

equation for u. Thanks to (2.28), we also have c̃ < 0 and d̃2, f̃ > 0, provided ‖w‖C2(Ω) is sufficiently
small. Thus Lemma A.15 implies u > 0 in Ω+ ∪ T+ when Rq ≥ 0 on T+ and wq ≥ 0 on L+, and
similarly u < 0 in Ω+ ∪ T+ when Rq ≤ 0 on T+ and wq ≤ 0 on L+.

In Lemma 2.10 and Proposition 2.11, we have not assumed that w is even in q. Thus their
statements remain true if Ω+ is replaced by any half-strip (−m, 0)× (q0,∞).

2.3 Preservation of nodal properties

In this section we use Proposition 2.11 to address more complicated nodal properties involving second
and third partial derivatives of w. We remark that the results of this subsection remain true if we
set the Hölder parameter α = 0 in (1.18e). For solutions w of (1.18) (which includes the assumption
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that w is even in q), the nodal elevation properties are the following five conditions:

wq < 0 in Ω+ ∪ T+, (2.31a)

wqq < 0 on L+, (2.31b)

wqp < 0 on B+, (2.31c)

wqqp(0,−m) < 0, (2.31d)

wqq(0, 0) < 0. (2.31e)

Here the sets Ω+, T+, L+ were defined in (2.23) and (2.24). The nodal depression properties are the
same as the nodal elevation properties except that all of the inequalities are reversed:

wq > 0 in Ω+ ∪ T+, (2.32a)

wqq > 0 on L+, (2.32b)

wqp > 0 on B+, (2.32c)

wqqp(0,−m) > 0, (2.32d)

wqq(0, 0) > 0. (2.32e)

Since w → 0 as q → ±∞, the nodal elevation properties (2.31) imply w > 0 in Ω+∪T+ and hence
that w represents a monotone wave of elevation. Similarly the nodal depression properties (2.32)
imply that w represents a monotone wave of depression. As in [CS04, CS07], the nodal properties
(2.32) and (2.31) are motivated by the following fact:

Lemma 2.12. Let w be a solution of (1.18).

(a) If wq < 0 in Ω+ ∪ T+, then the nodal elevation properties (2.31) hold.

(b) If wq > 0 in Ω+ ∪ T+, then the nodal depression properties (2.32) hold.

Proof. The proofs of (a) and (b) are the same, so we only prove (a). Differentiating (1.18a) with
respect to q we discover that ϕ = wq satisfies the equation

∂p

(1 + w2
q

h3
p

∂pϕ−
wq
h2
p

∂qϕ
)

+ ∂q

(
− wq
h2
p

∂pϕ+
1

hp
∂qϕ

)
= 0 (2.33)

in Ω+. Since infΩ hp > 0, we easily check that (2.33) is a uniformly elliptic equation for ϕ. Since
wq < 0 in Ω+ and wq = 0 on B+ ∪ L+, the Hopf lemma then immediately implies (2.31b) and
(2.31c). Since wqp = wqq = 0 at (0,−m), (2.31d) follows from Serrin’s edge point lemma. It remains
to show (2.31e). Since wq = wpq = wqqq = 0 at (0, 0), Serrin’s edge point lemma implies that either
wqq(0, 0) < 0 or wqq(0, 0) = 0 and wqpp(0, 0) > 0. Expanding (2.33), we get

2wqwqqhpp
h3
p

−
3wpqw

2
qhpp

h4
p

− 3wpqhpp
h4
p

+
wqqq
hp

− 3wpqwqq
h2
p

+
wppqw

2
q

h3
p

− 2wpqqwq
h2
p

+
4w2

pqwq

h3
p

+
wppq
h3
p

= 0.

(2.34)

Evaluating (2.34) at (0, 0), wq = wpq = wqqq = 0 implies wqpp = 0. Thus the only possibility is
wqq(0, 0) < 0, i.e. that (2.31e) holds. We remark that this last step of the argument differs from
[CS07], where instead the boundary condition is differentiated twice (in our case this would introduce
Rqq terms with indeterminate sign).

Unlike in the periodic case, (2.31) and (2.32) are not open conditions in C3
b(Ω) since Ω is un-

bounded. Nevertheless, we have the following lemma:

Lemma 2.13 (Open condition). Fix w∗ satisfying (1.18) and let M > 0.
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(a) If w∗ satisfies the nodal elevation conditions (2.31), then there exists ε > 0 such that every
solution w of (1.18) with ‖w − w∗‖C3(Ω) < ε and Rq ≤ 0 for q > M also satisfies (2.31).

(b) If w∗ satisfies the nodal depression conditions (2.32), then there exists ε > 0 such that every
solution w of (1.18) with ‖w − w∗‖C3(Ω) < ε and Rq ≥ 0 for q > M also satisfies (2.32).

Proof. The proofs of (a) and (b) are the same, so we only prove (a). Let M > 0 and fix w∗ as
in the statement of the lemma. By Lemma 2.12, it is enough to show that wq < 0 in Ω+ ∪ T+ if
‖w−w∗‖C3(Ω) is sufficiently small. Letting K > M be a constant to be determined, we first we split
Ω+ into two overlapping regions,

Ω1 = {(q, p) ∈ Ω+ : 0 < q < 2K}, Ω2 = {(q, p) ∈ Ω+ : q > K},
and set Bi = B+∩∂Ωi and Ti = T+∩∂Ωi. On the bounded set Ω1, we can argue as in [CS07]: Taylor
expanding near the sides L+, B1, T1 and the corners (0, 0),(0,−m), the nodal conditions (2.31) for
w∗ imply that wq < 0 in Ω1 ∪ T1 whenever ‖w − w∗‖C3(Ω) < εK for some εK > 0 depending on K.

Next we consider the unbounded set Ω2. Letting δ > 0 be as in Proposition 2.11, the assump-
tion w∗ ∈ C2

0 (Ω) allows us to fix K > M large enough that ‖w∗‖C2(Ω2) < δ/2. Assuming that

‖w − w∗‖C3(Ω) < ε := min( δ2 , εK), our above argument then guarantees wq < 0 in Ω1 ∪ T1. In
particular, wq ≤ 0 on the left boundary {q = K} of Ω2. Since ‖w‖C2(Ω2) < δ and Rq ≤ 0 on T2,
Proposition 2.11 implies wq < 0 in Ω2 ∪ T2.

As in [CS04], the nodal properties (2.31) and (2.32) are also each closed conditions in the following
sense:

Lemma 2.14 (Closed condition). Let wn be a sequence of solutions of (1.18) which converges in
C3

b(Ω) ∩ C1
0 (Ω) to a solution w of (1.18) with prescribed pressure R.

(i) If the wn satisfy the nodal elevation properties (2.31) and Rq ≤ 0 for q ≥ 0, then w also
satisfies (2.31) unless w ≡ 0.

(ii) If the wn satisfy the nodal depression properties (2.32) and Rq ≥ 0 for q ≥ 0, then w also
satisfies (2.32) unless w ≡ 0.

Proof. The proofs of (i) and (ii) are the same, so we only prove (i). Thanks to Lemma 2.12, it is
enough to show wq < 0 in Ω+∪T+. By continuity, wq ≤ 0 in Ω+. Since ϕ = wq solves the uniformly
elliptic equation (2.33) in Ω+, wq ∈ C0

0 (Ω+), and wq ≤ 0 on B+ ∪ L+, the maximum principle
Lemma A.14 implies that wq < 0 in Ω+ ∪T+ unless wq = 0 at some point (q∗, 0) on T+. So suppose
for contradiction that wq achieves its maximum value 0 at a point (q∗, 0) on T+. Differentiating
(1.18b) with respect to q we have

wqwqq
(Hp + wp)2

−
1 + w2

q

(Hp + wp)3
wpq + gwq = −Rq on T+. (2.35)

Since wqq(q
∗, 0) = 0, (2.35) gives

wqp = Rq(Hp + wp)
3 ≤ 0 at (q∗, 0).

But the Hopf lemma implies wqp(q
∗, 0) > 0, a contradiction.
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3 Uniform regularity and decay

In this section we will establish criteria for sequences wn of solutions to be precompact. In Section 3.1
we will show that ‖w‖C3+α is controlled by ‖wp‖L∞ and ‖R‖C2+α . While for the periodic problem this
would be enough to establish compactness, in an unbounded domain we need additional control at
infinity. In Section 3.2 we prove two identities involving a quantity S(q) called the flow force, which
we will then use in Section 3.3 to establish uniform decay and precompactness of non-oscillatory
sequences of solutions. This is particularly useful since sequences of solutions satisfying either of
the nodal properties (2.31) or (2.32) from Section 2.3 cannot oscillate. Most of the results in this
section are generalizations to R 6≡ 0 of results in [Whe]. Since the free waves in that paper were all
monotone waves of elevation, there was no need to consider oscillatory sequences. As in Section 2,
we will work with an arbitrary pressure term R (or a sequence Rn) and not 1-parameter family
R(q;β).

3.1 Uniform regularity

This section is devoted to the proof of the following proposition:

Proposition 3.1. For each K > 0 there exists a constant C depending only on K such that all
solutions w of (1.18) with ‖wp‖L∞(Ω) + ‖R‖C2+α(R) ≤ K satisfy ‖w‖C3+α(Ω) ≤ C.

The proof of Proposition 3.1 is similar to the proof of Proposition 5.12 in [Whe]. The four steps
are:

I. Estimate ‖w‖C1 in terms of ‖wp‖L∞ and ‖R‖L∞ .

II. Estimate ‖w‖C2+α′ in terms of ‖w‖C1 and ‖R‖C1+α for some α′ ∈ (0, α].

III. Estimate ‖w‖C3+α′ in terms of ‖w‖C2+α′ and ‖R‖C2+α′ .

IV. Repeat step III with α′ replaced by α.

To complete Step I, we use a lower bound on the pressure P . In the stream function formulation, P
is given by (1.10),

P (x, y)− Patm = −|∇ψ|
2

2
− g(y − d) + Γ(−ψ) +

λ

2
,

where (x, y) range over the fluid domain Dη = {−d < y < η(x)}. Using (1.12), we can also express
P in terms of w(q, p),

P (q, p)− Patm = −
1 + w2

q

2(Hp + wp)2
− g(H + w − d) + Γ +

λ

2
. (3.1)

Lemma 3.2. Suppose that η ∈ C2
b(R) ∩ C0

0 (R) and ψ ∈ C3
b(Dη) satisfy (1.11), supDη ψy < 0, and

lim
|x|→∞

sup
y
|P (x, y)− Patm − g(η(x)− y)| = 0. (3.2)

Then the pressure P is bounded below,

P (x, y)− Patm ≥ inf
x′∈R

R(x′)−Mψ(x, y), (3.3)

where the constant M = 1
2‖max(γ, 0)‖L∞ depends only on γ.

Proof. With R ≡ 0, this was proven by Varvaruca [Var09] and also repeated in [Whe]. The modifi-
cations for R nonzero are straightforward and hence omitted.
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Using Lemma 3.2 we can now complete Step I:

Proposition 3.3. Let w be a solution of (1.18a)–(1.18e). Then there exist constants δ∗, N∗ > 0
depending only on g, γ, d so that

Hp + wp ≥
δ∗√

1 + |inf R|
, |wq| ≤ N∗

√
1 + |inf R|(1 + |wp|).

In particular, there exists a constant C∗ depending only on g, γ, d so that

‖w‖C1(Ω) ≤ C∗
√

1 + |inf R|(1 + ‖wp‖L∞(Ω)). (3.4)

Proof. Let ψ ∈ C3
b(Dη) be the associated stream function. Then infDη ψy > 0 by (1.18d), and (3.2)

follows from (3.1) and w ∈ C1
0 (Ω). Letting M = 1

2‖max(γ, 0)‖L∞ , Lemma 3.2 therefore implies

P − Patm = −
1 + w2

q

2(Hp + wp)2
− g(H + w − d) +

1

2H2
p

≥ −|inf R|+Mp,

and hence

1 + w2
q

2(Hp + wp)2
≤ |inf R| −Mp− g(H + w − d) +

1

2H2
p

≤ |inf R| −Mp+ gd+
1

2H2
p

≤ C1(1 + |inf R|) (3.5)

where the constant C1 depends only on g, d, γ. Rearranging (3.5) in two ways, we obtain

Hp + wp ≥
(2C1)−1/2

√
1 + |inf R|

, |wq| ≤
√

2C1

√
1 + |inf R|(‖Hp‖L∞ + |wp|),

as desired. Taking the supremum of both sides of the second inequality yields

‖wq‖L∞ ≤ C
√

1 + |inf R|(1 + ‖wp‖L∞).

Since w(q, p) =
∫ 0
−mwp(q, p) dp implies ‖w‖L∞ ≤ m‖wp‖L∞ , we therefore have (3.4).

As in [Whe], we accomplish step II by using a regularity result of Lieberman [Lie87] for fully
nonlinear two-dimensional elliptic boundary value problems of the form

F (x,Dϕ,D2ϕ) = 0 in B−ρ , G(x, ϕ,Dϕ) = 0 on B0
ρ := ∂B−ρ ∩ T. (3.6)

Here B−ρ ⊂ Ω is a half-ball with radius ρ ∈ (0,m) and center (q0, 0) ∈ T ,

B−ρ = B−ρ (q0) = {x ∈ R2 : |x− (q0, 0)| < ρ, p < 0}, (3.7)

and for convenience we have set x = (q, p). We assume that (3.6) is uniformly elliptic with a
uniformly oblique boundary condition in the sense that

c1I ≤ Fs(x, r, s) ≤ c2c1I, |Gr(x, z, r)| ≥ c3 (3.8)

for positive constants c1, c2, c3 and all (x, z, r, s) ∈ B−ρ × R × R2 × S2, where S2 is the space of
symmetric 2× 2 matrices.

The following is a simplified version of Theorem 3 in [Lie87]:

Theorem 3.4. Fix ρ ∈ (0,m) and a Hölder parameter α ∈ (0, 1), and let F ∈ C0,1(B
−
ρ × R2 × S2)

and G ∈ C1+α(B0
ρ ×R×R2) satisfy (3.8) for some positive constants c1, c2, c3. Suppose in addition

that there exists a positive constant c4 so that ‖G‖C1+α(B0
ρ×R×R2) ≤ c4 and

|F (x, r, 0)| ≤ c4, (1 + |s|)|Fr(x, r, s)|+ |Fz(x, r, s)|+ |Fx(x, r, s)| ≤ c4(1 + |s|2),
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for all (x, r, s) ∈ B−ρ × R2 × S2. Then for any K > 0, there exist positive constants α′ and C

depending on α, ρ, c1, c2, c3, c4 so that any solution ϕ ∈ C3(B
−
ρ ) of (3.6) with sup(|ϕ| + |Dϕ|) ≤ K

obeys the estimate

‖ϕ‖C2+α′ (B−
ρ/2

) ≤ C. (3.9)

Using Theorem 3.4, we can now complete step II:

Lemma 3.5. For each K > 0 there exists C = C(K) and α′ = α′(K) ∈ (0, α] so that any solution
w of (1.18) with ‖wp‖L∞(Ω) + ‖R‖C1+α(R) < K satisfies ‖w‖C2+α′ (Ω) < C.

Proof. For convenience set h = H + w. In what follows we use C, δ > 0 and α′ ∈ (0, α] to denote
constants depending only on K. Proposition 3.3 implies ‖h‖C1(Ω) < C, and Proposition 3.3 implies
infΩ hp ≥ δ > 0.

Now we apply Theorem 3.4. Writing (1.13a)–(1.13b) in non-divergence form, we see that ϕ = h
satisfies (3.6) with

F (p, r, s) = (1 + r2
1)s22 − 2r1r2s12 + r2

2s11 + γ(−p)r3
2

G(q, z, r) =
1 + r2

1

2r2
2

+ g(z − d)− λ

2
+R(q),

for any half-ball B−1 = B−1 (q0), q0 ∈ R. Restricting F and G to |z| + |r| ≤ K and r2 ≥ δ,
they satisfy the hypotheses of Theorem 3.4 with c1, c2, c3, c4 depending on K, δ, α, γ, ‖R‖C1+α (but
not on q0). Thus, modifying F and G using cutoff functions and applying Theorem 3.4, we have
‖h‖C2+α′ (B−

1/2
) ≤ C where the constants C and α′ only depend on K, δ, ‖R‖C1+α .

Letting G(x, z, p) = p1, we can argue similarly for half-balls centered on the bottom boundary
p = −m. Combining these boundary estimates with C2+α′ interior estimates [GT01, Theorem 13.6]
for quasilinear equations, we deduce ‖h‖C2+α′ (Ω) < C and hence ‖w‖C2+α′ (Ω) < C as desired.

Next we complete step III by differentiating (1.18) with respect to q and applying a Schauder
estimate for linear equations:

Lemma 3.6. For each K > 0 and α′ ∈ (0, α] there exists C = C(K,α′) so that any solution w of
(1.18) with ‖w‖C2+α′ (Ω) + ‖R‖C2+α′ (R) < K satisfies ‖w‖C3+α′ (Ω) < C.

Proof. For convenience set h = H+w. Differentiating (1.18) with to q, we find that ϕ = wq satisfies

∂p

(1 + w2
q

h3
p

∂pϕ−
wq
h2
p

∂qϕ
)

+ ∂q

(
− wq
h2
p

∂pϕ+
1

hp
∂qϕ

)
= 0 in Ω, (3.10)

1 + w2
q

h3
p

∂pϕ+
wq
hp
∂qϕ+ gϕ = −Rq on p = 0, (3.11)

with ϕ = 0 on p = −m. By Proposition 3.3, infΩ hp ≥ δ with δ = δ(K) > 0. This implies that the
operator in (3.10) is uniformly elliptic. Moreover, the boundary condition (3.11) is uniformly oblique
in that the coefficient of ∂pϕ in (3.11) is uniformly positive. Since the coefficients in (3.10)–(3.11)
have their C1+α′(Ω) norms controlled by K, the Schauder estimate (A.13) therefore gives

‖wq‖C2+α′ (Ω) = C(‖R‖C1+α′ (Ω) + ‖wq‖L∞(Ω)) ≤ C. (3.12)

Solving (1.18a) for wpp, we see that (3.12) implies ‖wpp‖C1+α′ < C, and hence ‖w‖C3+α′ < C.

Finally, we complete step IV and prove Proposition 3.1.
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Proof of Proposition 3.1. Let w solve (1.18) and satisfy ‖wp‖L∞ + ‖R‖C2+α ≤ K. Then Lemma 3.5
implies ‖w‖C2+α′ < C for some α′ ∈ (0, α], and hence Lemma 3.6 implies ‖w‖C3+α′ < C. Thus
‖w‖C2+α < C, so another application of Lemma 3.6 gives ‖w‖C3+α < C.

3.2 Flow force

In this section we consider the x-dependent quantity

S(x) =

∫ η(x)

−d

(
P (x, y)− Patm + (c− u(x, y))2

)
dy

called the flow force. In terms of the height function h = H + w, Bernoulli constant λ, and an-
tiderivative Γ of the vorticity function, S is given by

S(q;h) =

∫ 0

−m

(
1− h2

q

2h2
p

+ Γ− g(h− d) +
λ

2

)
hp dp. (3.13)

We view the Bernoulli constant λ in (3.13) as fixed and unrelated to the asymptotic behavior of the
height function h(q, p). As in [Whe], we will use the flow force to show that bounded sequences of
monotone waves enjoy a uniform decay property.

The following lemma is a consequence of the conservation of x-momentum:

Lemma 3.7. Let h satisfy (1.13a)–(1.13c). Then

dS

dq
(q;h) = R(q)

∂h

∂q
(q, 0). (3.14)

In particular, if R ≡ 0 then S is constant.

Proof. Let

f =
1− h2

q

2h2
p

+ Γ− g(h− d) +
λ

2

be one of the factors in the integrand defining S. Then (1.13a) and an integration by parts yield

dS

dq
=

d

dq

∫ 0

−m
fhp dp =

∫ 0

−m
(fqhp − hqfp) dp+ fhq

∣∣
T

= −
∫ 0

−m

(hq
h2
p

)
p
dp+ fhq

∣∣
T
.

By (1.13c), hq = 0 on B, so we conclude

dS

dq
=
(
− hq
h2
p

+ fhq

)∣∣∣
T

= Rhq
∣∣
T

as desired.

Recall the one-parameter family Ĥ(p; λ̂) of height functions introduced at the start of Section 2.1,

Ĥ(p) = Ĥ(p; λ̂) =

∫ p

−m

ds

(λ̂+ 2Γ(s))1/2
. (3.15)

The corresponding flows have constant depth d̂ = Ĥ(0, λ̂) and total head Q̂ = λ̂/2 + gd̂. From
Lemma 2.1 we also have functional relations λ̂ = λ̃(d̂) and Q̂ = Q̃(d̂). We define

S̃(d̂) = S(q; Ĥ( · ; λ̃(d̂))), (3.16)

where the right hand side is clearly independent of q. Note that in defining S̃(d̂) we have not replaced
the Bernoulli constant λ appearing in (3.13) by λ̃(d̂).
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Lemma 3.8. The function S̃(d̂) defined above satisfies

S̃′(d̂) = Q̃(d)− Q̃(d̂). (3.17)

In particular, if 0 < d̂ ≤ d∗, then S̃(d̂) > S̃(d) unless d̂ = d. Here d∗ was defined in Definition 2.2.

Proof. First we compute

S̃(d̂) =

∫ 0

−m
(λ̃(d̂) + 2Γ)1/2 dp+

λ− λ̃(d̂)

2
d̂− gd̂2

2
+ gdd̂.

Differentiating with respect to d̂ and using the identity

d

dd̂

∫ 0

−m
(λ̃(d̂) + 2Γ(p))1/2 dp =

1

2
d̂ λ̃′(d̂),

the terms in S̃′(d̂) involving derivatives of λ̃ cancel and we are left with (3.17) as desired.
By Lemma 2.1(b), Q̃(d̂) is a strictly convex function of d̂ ∈ (0, dcr), with a unique minimum at

d̂ = dcr > d. Recalling the definition of d∗, we deduce

Q̃(d̂) < Q̃(d) for d < d̂ < d∗, Q̃(d̂) > Q̃(d) for 0 < d̂ < d.

Integrating and applying (3.17), we conclude

S̃(d̂)− S̃(d) =

∫ d̂

d
(Q̃(d)− Q̃(s))ds > 0 for 0 < d̂ ≤ d∗, d̂ 6= d.

If the vorticity γ is constant, then S̃ can be computed explicitly,

S̃(d̂) =
m2d̂

2d2
+
m2

2d̂
− γ2d̂3

24
+
γ2d2d̂

8
− gd̂2

2
+ gdd̂. (3.18)

In light of Lemma 3.7, one way to obtain (3.18) is to integrate (2.5) and apply (3.14).
We also remark that (3.17) is related to (3.14) in the following way: Suppose that d̂ = d̂(q)

is a slowly varying function. Then h(q, p) = Ĥ(p; λ̃(d̂(q))) is an approximate solution of (1.13a)
and solves the boundary condition (1.13b) exactly with R(q) = Q̃(d)− Q̃(d̂(q)). If h were an exact
solution of (1.13), then (3.14) would give

S̃′(d̂(q))d̂′(q) = S′(q;h) = R(q)d̂′(q) = (Q̃(d)− Q̃(d̂(q)))d̂′(q),

which is (3.17) multiplied by d̂′(q).

3.3 Uniform decay and compactness

In this section we will show that bounded non-oscillatory sequences of solutions wn decay uniformly
in n as q → ±∞. Then we will use Schauder estimates to show that bounded sequences of solutions
decaying uniformly at infinity are precompact. First, we restate Definition 1.3 in the (q, p) variables:

Definition 3.9 (Oscillatory sequence). We call sequence of solutions wn of (1.18) non-oscillatory if
there exists M > 0 such that, for each n, ∂qwn does not change sign for q ≥ M . Otherwise we call
wn oscillatory.

Lemma 3.10 (Uniform decay). Fix an integer k ≥ 2 and suppose that a sequence (wn, Rn) of
solutions of (1.18) satisfies supn ‖wn‖Ck+α(Ω) <∞ as well as the uniform bounds

inf
n

inf
q
Rn(q) > −∞,

∫

R
sup
n
|Rn(q)| dq <∞, lim

q→±∞
sup
n
|Rn(q)| = 0, (3.19)

25



on Rn. Then either the wn satisfy the uniform decay property

lim
q→±∞

sup
n

sup
p

∑

|ν|≤k
|Dνwn(q, p)| = 0, (3.20)

or wn is an oscillatory sequence.

Proof. Let wn be a non-oscillatory sequence, so that there exists M > 0 such that each ∂qwn does
not change sign for q ≥M . Assume for contradiction that (3.20) does not hold. Then we can extract
a subsequence and find (qn, pn) ∈ Ω with qn →∞ and pn → p̄ ∈ [−m, 0] so that

∑

|ν|≤k
|Dνwn(qn, pn)| ≥ ε (3.21)

for all n and some fixed ε > 0. There are two cases: either we can extract a further subsequence so
that ∂qwn ≥ 0 for q ≥M for all n, or we can extract a subsequence with ∂qwn ≤ 0 for q ≥M for all
n. Since the proofs are the same, we will assume we are in the first case.

Set hn = H + wn, and consider the translated sequence

h(1)
n (q, p) = hn(q + qn, p).

By assumption, ‖hn‖Ck+α is bounded uniformly in n, and Proposition 3.3 and the lower bound on Rn
in (3.19) together imply ∂phn ≥ δ for all n and some fixed δ > 0. Thus we can extract a subsequence

with h
(1)
n → h(1) in Ckloc(Ω), for some h(1) ∈ Ck+α

b (Ω) satisfying (1.13a), (1.13c), and h
(1)
p ≥ δ. Since

supn|Rn(q)| → 0 as q → ∞, h(1) also solves (1.13b) with R = 0. Lastly, (3.21) guarantees that
h(1)(q, p) is not identically H. We will reach a contradiction by showing h(1) ≡ H.

Now we compute the flow force S(q;h(1)) according to (3.13). From the asymptotic conditions

(1.13d) on h
(1)
n , we know that S(q;h

(1)
n )→ S̃(d) as q →∞. Since h

(1)
n → h(1) in Ckloc(Ω), Lemma 3.7

therefore gives

S(q;h(1))− S̃(d) = lim
n→∞

S(q + qn;h(1)
n )− S̃(d) = lim

n→∞

∫ ∞

q+qn

Rn(s)∂qhn(s, 0) ds

for each q ∈ R. Thus supn|Rn| ∈ L1(R) implies

|S(q;h(1)(q))− S̃(d)| ≤
(

sup
n
‖∂qhn‖L∞

)
lim
n→∞

∫ ∞

q+qn

sup
m
|Rm(s)| ds = 0,

i.e. that S(q;h(1)) ≡ S̃(d).

Next we use our non-oscillation assumption. Since ∂qhn ≥ 0 for q ≥ M , we have h
(1)
q ≥ 0 on Ω.

Thus

h(1)(q, p)→ H±(p) as q → ±∞ (3.22)

pointwise in p for some bounded functions H±, and moreover

H−(p) ≤ h(1)(q, p) ≤ H+(p) in Ω. (3.23)

To get more information about H±(p), we consider the translated sequence

h(2)
r (q, p) = h(1)(q + r, p), r = 1, 2, 3, . . . (3.24)

Extracting a subsequence, we can assume that h
(2)
r converges in Ckloc(Ω) to a function h(2) ∈ Ck+α

b (Ω)

solving (1.13a)–(1.13c) with R = 0, h
(2)
p ≥ δ, and S(q;h(2)) ≡ S̃(d). But (3.22) implies h(2) = H+,

so we deduce that H± ∈ Ck+α[−m, 0] has these properties. Replacing q + r with q − r in (3.24) we
obtain the same conclusion for H−.

26



Integrating (1.13a) and applying the boundary condition (1.13c), we find H±(p) = Ĥ(p; λ̂±) for
some Bernoulli constants λ̂± ≥ −2Γmin. Here the height functions Ĥ are defined in (2.1) at the start
of Section 2.1. Denoting the corresponding depths by d̂± = Ĥ(0; λ̂±), S(H±) = S̃(d) gives

S̃(d̂+) = S̃(d̂−) = S̃(d), (3.25)

while the boundary condition (1.13b) gives

Q̃(d̂+) = Q̃(d̂−) = Q̃(d). (3.26)

Recalling the definition of d∗ (Definition 2.2), we see that (3.26) and the convexity of Q̃ (Lemma 2.1(b))
imply d̂+, d̂− ≤ d∗. Combining this with (3.25), Lemma 3.8 implies d̂+ = d̂− = d and hence
H+ = H− = H. But then (3.23) forces h(1) ≡ H, a contradiction.

Assuming the uniform decay condition (3.20) in the conclusion of Lemma 3.10, we can obtain
compactness using Schauder estimates for linear equations.

Lemma 3.11 (Compactness). Fix an integer ` ≥ 2 and let (wn, Rn) be a sequence of solutions to
(1.18). If supn‖wn‖C`+α(Ω) < ∞, Rn → R in C`−1+α

b (R), and the uniform decay condition (3.20)

on wn holds with k = 0, then we can extract a subsequence with wn → w in C`+αb (Ω).

Proof. As in the proof of Lemma 3.10, Proposition 3.3 guarantees that ∂p(H + wn) ≥ δ > 0 for
some fixed δ > 0. Because of the uniform bounds on ‖wn‖C`+α(Ω) and the uniform decay property

(3.20) with k = 0, we can then extract a subsequence so that wn → w in C`loc(Ω) and C0
b(Ω), where

w ∈ C`+αb (Ω) and R solve (1.18) and ∂p(H + w) ≥ δ.
Set h = H + w and hn = H + wn, and let M = supn‖hn‖C`+α(Ω) < ∞. A direct computation

shows that vn = wn − w satisfies

(1 + h2
q)∂

2
pvn − 2hphq∂q∂pvn + 2h2

p∂
2
qvn − an∂qvn − bn∂pvn = 0 in Ω, (3.27)

−cn∂pvn + dn∂qvn + gvn = R−Rn on T, (3.28)

where the coefficients an, bn are given by

an = −hnqhnpp − hqhnpp + 2hnphnpq,

bn = −hnphnqq − hphnqq + 2hqhnpq − γh2
np − γhphnp − γh2

p,

cn =
(1 + h2

q)(hp + hnp)

2h2
ph

2
np

, dn =
hnq + hq

2h2
np

.

Here we’ve abbreviated ∂phn by hnp and so on. Since hp ≥ δ and ‖hn‖C`+α(Ω) ≤ M , the elliptic

operator in (3.27) is uniformly elliptic and its coefficients are uniformly bounded in C`−2+α
b (Ω).

Likewise the coefficients in (3.28) are uniformly bounded in C`−1+α
b (Ω), with the coefficient cn in

front of ∂pv satisfying cn ≥ δM−4 > 0. Thus we have a Schauder estimate (see Lemma A.7)

‖vn‖C`+α(Ω) ≤ C(‖R−Rn‖C`−1+α(Ω) + ‖vn‖L∞(Ω))
n→∞−−−→ 0,

and hence wn → w in C`+αb (Ω) as desired.
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4 Continuation

In this section we will prove our global continuation results, Theorems 1.1, 1.2, and 1.4 in the w, q, p
variables. See Section 1.3 for the relationship between these and the original u, v, η, P, x, y variables,
and [CS04, Whe] for more details about the transformation. As in Section 1.2, we consider a fixed
1-parameter family β 7→ R( · ;β) in C2(R, C2+α

b,e (R)) of pressure terms satisfying R(q; 0) = 0 and
(1.3):

qβRq(q;β) ≤ 0,

∫

R
sup
|β|<M

|R(q;β)| dq <∞, lim
β→+∞

R(0;β) = +∞,

for any M > 0. The first condition guarantees that sign of R and Rq are both determined by
the sign of β. In the simple case where R(q;β) = βR0(q), the second condition says that the force
β
∫
RR

0 dq exerted by the prescribed pressure on a flat free surface is always finite. The last condition
guarantees that the limit β → +∞ has physical significance. We note that no assumptions have been
made about the behavior of R as β → −∞. One physically meaningful choice would be to have the
surface pressure R(0;β) at the origin tend to −∞; another would be to have the force

∫
RR(x;β) dx

tend to −∞.
In Section 4.1, we will formulate (1.18) as a nonlinear operator equation F (β,w) = 0 in a Banach

space. We will also state several important results about the corresponding linearized operators.
Since R does not appear in the linearized equations, these results were essentially proved already
in [Whe], so we will omit almost all of the proofs. In Section 4.2, we will prove Theorem 1.1 using
the implicit function theorem together with monotonicity and compactness results from Sections 2
and 3. The remaining theorems are proved using the Healey–Simpson degree [HS98], the important
properties of which are summarized in Appendix A.2 for the readers convenience. In Section 4.3, we
will define the continua C±2 and C ?

3 in terms of the curve C1 from Theorem 1.1, making precise the
sense in which they are connected. We will then use nodal properties together with a topological
degree argument to prove that neither C−2 nor C ?

3 is precompact. Finally, in Section 4.4 we will prove
Theorems 1.2 and 1.4. Unlike in [Whe], we will not use weighted spaces when defining the topological
degree for F . This is possible thanks to Lemma 4.12, a simple observation about nonlinear Fredholm
operators. We note that Lemma 4.12 can also be applied in [Whe] to remove all mention of weights
from the argument.

4.1 Formulation and linearized operators

We define the Banach spaces

X = {w ∈ C3+α
b,e (Ω) ∩ C2

0 (Ω) : w = 0 on B}, Y = Y1 × Y2,

Y1 = C1+α
b,e (Ω) ∩ C0

0 (Ω), Y2 = C2+α
b,e (T ) ∩ C1

0 (Ω),

where the subscript “e” denotes evenness in q. Because of (1.18d), we introduce a small parameter
δ ≥ 0 and work in the open subset

Uδ =
{
w ∈ X : inf

Ω
(Hp + wp) > δ

}
⊂ X.

In this notation, (1.18) is a nonlinear operator equation F (β,w) = 0, where

F = (F1,F2) : R× U0 −→ Y
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is given by

F1(w) =
(
−

1 + w2
q

2(Hp + wp)2
+ Γ

)
p

+
( wq
Hp + wp

)
q
,

F2(β,w) =

(
1 + w2

q

2(Hp + wp)2
+ gw − λ

2
+R( · ;β)

)∣∣∣
T
.

One easily checks that F is smooth (in fact analytic), and that the linear operator

Fw(w) := Fw(β,w) : X → Y

obtained by taking the Fréchet derivative of F with respect to w is independent of β and given by

F1w(w)ϕ =
( 1 + w2

q

(Hp + wp)3
ϕp −

wq
(Hp + wp)2

ϕq

)
p

+
( 1

Hp + wp
ϕq −

wq
(Hp + wp)2

ϕp

)
q
,

F2w(w)ϕ = −
1 + w2

q

(Hp + wp)3
ϕp +

wq
(Hp + wp)2

ϕq + gϕ.

In particular, linearizing about the trivial solution w = 0 we obtain the linear operator from (2.10),

F1w(0)ϕ =
( 1

H3
p

ϕp

)
p

+
( 1

Hp
ϕq

)
q
, F2w(0)ϕ = − 1

H3
p

ϕp + gϕ. (4.1)

We note that for fixed w ∈ U0, F1w(w) is uniformly elliptic and F2w(w) is uniformly oblique. Indeed,
the coefficients of F1w(w) satisfy

1 + w2
q

(Hp + wp)3

1

Hp + wp
−
(

wq
(Hp + wp)2

)2

=
1

(Hp + wp)4

while the coefficient of ϕp in F2w(w)ϕ satisfies

−
1 + w2

q

(Hp + wp)3
≤ − 1

(Hp + wp)3
.

Furthermore, F1w and F2w are uniformly elliptic and oblique as w ranges over bounded subsets of
Uδ with δ > 0 fixed.

We now state several lemmas concerning the linearized operators Fw. These will be needed in
Section 4 when we define a topological degree for F . Nearly identical lemmas are proved in [Whe], so
we omit almost all of the proofs. While the Hölder spaces Ck+α

0 (Ω) of functions vanishing at infinity
do not appear in [Whe], their inclusion poses no difficulty here, see Corollary A.11 and Lemmas A.12
and A.13 in Appendix A.3. As in Appendix A.3, it will sometimes be useful to think of Fw as a
map Xb → Yb, where Xb, Yb are analogues of X,Y without the vanishing condition at infinity or
evenness,

Xb = {w ∈ C3+α
b (Ω) : w = 0 on B}, Yb = C1+α

b (Ω)× C2+α
b (T ).

Lemma 4.1. Let w ∈ U0 satisfy

g sup
q

∫ 0

−m
(Hp + wp)

3 dp < 1. (4.2)

Then the linear operator Fw(w) is invertible X → Y and Xb → Yb. In particular, Fw(0) is invertible
whenever λ > λcr.

Proof. For convenience set h = H + w, and consider the Hilbert space

H = {v ∈ H1(Ω) : u|B ≡ 0}.
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We say that v ∈H is a weak solution of Fw(w)v = (f1, f2) if, for all ϕ ∈H ,

B(v, ϕ) :=

∫∫

Ω

(1 + h2
q

h3
p

vpϕp −
hq
h2
p

(vpϕq + vqϕp) +
1

hp
vqϕq

)
dp dq − g

∫

T
vϕ dx

= −
∫∫

Ω
f1ϕdp dq +

∫

T
f2ϕdx.

Here when integrating by parts we have taken advantage of the special divergence structure of
Fw(w). In particular, we have used that F2w(w) − g is the conormal derivative operator (see for
instance [GT01]).

For smooth ϕ ∈H , the elementary bound

|ϕ(q, 0)|2 =

∣∣∣∣
∫ 0

−m
ϕp(q, p) dp

∣∣∣∣
2

≤
(∫ 0

−m
h3
p dp

)(∫ 0

−m

ϕ2
p

h3
p

dp

)

implies
∫

T
ϕ2 dq ≤

(
sup
q∈R

∫ 0

−m
h3
p dp

)∫∫

Ω

ϕ2
p

h3
p

dp dq = ρ

∫∫

Ω

ϕ2
p

h3
p

dp dq,

where we have defined ρ = g supq
∫ 0
−m h

3
p dp < 1. Thus

B(ϕ,ϕ) ≥
∫∫

Ω

(1− ρ+ h2
q

h3
p

ϕ2
p −

2hq
h2
p

ϕpϕq +
1

hp
ϕ2
q

)
dp dq. (4.3)

The quadratic form
(

(1− ρ+ h2
q)/h

3
p −hq/h2

p

−hq/h2
p 1/hp

)

appearing in (4.3) is easily seen to be uniformly positive definite; indeed its diagonal entries as
well as its determinant (1 − ρ)/h4

p are uniformly bounded away from zero. Thus (4.3) implies
B(ϕ,ϕ) ≥ c‖Dϕ‖2L2(Ω). Since functions ϕ in H vanish on B, we have ‖ϕ‖H1(Ω) ≤ C‖Dϕ‖L2(Ω) and

hence B(ϕ,ϕ) ≥ c‖ϕ‖2H1(Ω). Standard Lax-Milgram arguments then show that Fw(w)v = (f1, f2)

has a unique solution v ∈H for any f ∈ L2(Ω) and g ∈ L2(T ).
See Appendix A in [Whe] for the passage from weak (H1) to classical (C3+α

b ) solutions, and
Corollary A.11 in this paper for the addition of vanishing conditions at infinity (the limiting operator
for Fw(w) is Fw(0)). To see the second statement in the lemma, we note that, by the definition
(1.14) of the Froude number, w = 0 satisfies (4.2) if and only if λ > λcr.

As mentioned earlier, the following lemmas appear with only minor modifications in [Whe] and
will be given here without proof.

Lemma 4.2 (Index 0). If w ∈ U0, then the linear operator Fw(w) : X → Y is Fredholm with index
0.

Lemma 4.3. Fix w ∈ U0 and set (A,B) = Fw(w). Then there exists κ0 < 0 so that, for
κ ∈ C \ (−∞, κ0], the linear operator (A − κI,B) : X → Y is Fredholm with index 0. Here we
temporarily allow functions in X,Y to be complex-valued.

Lemma 4.4 (Spectral estimate). Let δ > 0 and let K ⊂ Uδ be closed and bounded. Fixing
θ ∈ (π/2, π), there exist constants c1, c2 > 0 such that for all w ∈ K and κ ∈ C with |arg κ| ≤ θ and
|κ| > c2,

c1‖ϕ‖X ≤ |κ|α/2‖(A− κI)ϕ‖Y1 + |κ|(1+α)/2‖Bϕ‖Y2 ,
where (A,B) = Fw(w).
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Definition 4.5. Let L = (A,B) : X → Y1×Y2 be a bounded linear operator between Banach spaces
with X ⊂ Y1. We denote by Σ(A,B) the spectrum of A, considered as an unbounded operator
Y1 → Y1 with domain X ∩ kerB.

Lemma 4.6 (Spectral condition). Let w ∈ U0 and set (A,B) = Fw(w). Then there exists an open
neighborhood N of the ray {κ ∈ C : κ ≥ 0} in C such that Σ(A,B) ∩ N consists of finitely many
eigenvalues, each with finite algebraic multiplicity.

4.2 First continuation

We now state and prove a more precise version of Theorem 1.1 in terms of the w, q, p variables from
Section 1.3. We will abuse notation and continue to refer the curve in Theorem 1.1 as C1 even when
working in the w, q, p variables.

Theorem 4.7. The trivial solution (β,w) = (0, 0) of F (β,w) = 0 lies on a unique C2 curve
C1 ⊂ R× U0 of solutions parametrized by β,

w = w̃(β), β− < β < β+, −∞ ≤ β− < 0 < β+ <∞ (4.4)

with the following properties. Solutions in C1 with β > 0 satisfy the nodal elevation properties
(2.31), solutions in C1 with β < 0 satisfy the nodal depression properties (2.32), and all solutions in
C1 satisfy

g sup
q

∫ 0

−m
(Hp + wp)

3 dp < 1. (4.5)

Moreover, as β → β+ along C1 either (4.5) tends to an equality or ‖wp‖L∞ → ∞. As β → β− we
have the same two alternatives or else β− = −∞.

In the proof, we will need the following elementary observation:

Lemma 4.8. There exists β∗ > 0 so that any solution (β,w) of F (β,w) = 0 has β < β∗.

Proof. Let (β,w) solve F (β,w) = 0, and for convenience set h = H + w ≥ 0. At (q, p) = (0, 0), the
top boundary condition (1.13b) gives

−gd ≤
1 + h2

q

2h2
p

+ g(h− d) =
λ

2
−R(0;β),

and hence R(0;β) ≤ gd + λ
2 . Since R(0;β) → +∞ as β → ∞ by (1.3) and g, d, λ are fixed, we can

pick β∗ > 0 so that R(0;β) > gd+ λ
2 whenever β ≥ β∗.

We also record for later use the following consequence of the results in Section 3:

Proposition 4.9. Let (βn, wn) ∈ R × U0 be a sequence of solutions to F (β,w) = 0, and suppose
that supn‖∂pwn‖L∞(Ω) <∞ and infn βn > −∞. Then either (βn, wn) has a convergent subsequence
or it is oscillatory according to Definition 3.9.

Proof. By the elementary Lemma 4.8, supn βn ≤ β∗ < ∞, so we can extract a subsequence with
βn → β for some β ∈ R. Applying our uniform regularity result Proposition 3.1, we also have
supn‖wn‖C3+α(Ω) < ∞. If (βn, wn) is not an oscillatory sequence, then Lemma 3.10 on uniform
decay and our assumptions (1.3) on R(q;β) imply

lim
q→±∞

sup
n

sup
p
|wn(q, p)| = 0.

Applying our compactness result Lemma 3.11, we can therefore extract a further subsequence so
that wn → w in C3+α

b (Ω).
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Proof of Theorem 4.7. By Lemma 4.1, Fw(β,w) = Fw(w) is invertible for all w ∈ U0 satisfying
(4.5). In particular, Fw(β, 0) is invertible. Therefore by the implicit function theorem there exists
a C2 curve w = w̃(β) of solutions to F (β,w) = 0, defined for |β| < ε for some ε > 0. Unpacking
the first statement in (1.3), we find

R(q) ≥ 0, Rq(q) ≤ 0 for x > 0 and β > 0, (4.6)

R(q) ≥ 0, Rq(q) ≤ 0 for x > 0 and β < 0. (4.7)

Thus, after possibly shrinking ε, Proposition 2.11 and Lemma 2.12 on nodal properties guarantee
that w̃(β) satisfies the nodal elevation properties (2.31) for 0 < β < ε and the nodal depression
properties (2.32) for −ε < β < 0.

Let (β−, β+) be the maximal interval on which a C2 curve w = w̃(β) of solutions to F (β,w)
satisfying (4.5) can be defined. Our above argument shows that β− < −ε < ε < β+. We claim
that w̃(β) satisfies the nodal elevation properties (2.31) for 0 < β < β+ and the nodal depression
properties (2.32) for β− < β < 0. Set

B+ = {β ∈ (0, β+) : w̃(β) satisfies (2.31)},
B− = {β ∈ (β−, 0) : w̃(β) satisfies (2.32)}.

We know that each B± is nonempty; indeed we have just shown B+ ⊃ (0, ε) and B− ⊃ (−ε, 0). By
Lemma 2.13, B± are each open, and by Lemma 2.14 they are relatively closed. Thus B+ = (0, β+)
and B− = (β−, 0), which proves the claim.

Now we analyze the limits β → β±. By Lemma 4.8, β+ is finite. Suppose for contradiction that

lim inf
β→β+

‖w̃p(β)‖L∞(Ω) <∞, g lim inf
β→β+

sup
q

∫ 0

−m
(Hp + w̃p)

3 dp < 1.

Then by Proposition 4.9 we can find a sequence βn → β+ with w̃(βn) → w+ ∈ U0, where (β+, w+)
solves F (β+, w+) = 0 and w+ satisfies (4.5). By Lemma 4.1, Fw(β+, w+) is invertible. But then
we can apply the implicit function theorem near (β+, w+) to extend our C2 curve to β > β+ near
β+ while still maintaining (4.5), contradicting the maximality of β+. The same argument works as
β → β−, provided that β− > −∞.

4.3 Nodal properties and compactness

In this section we will prove Proposition 4.11 on the nodal properties of C±2 and C ?
3 , and also

Proposition 4.14, which states that neither C−2 nor C ?
3 is precompact. As in Section 4.2, we will

abuse notation and refer to the continua from Theorems 1.2 and 1.4 as C±2 and C ?
3 even when

working in the w, q, p variables. These continua are defined as follows:

Definition 4.10 (The continua C±2 and C ?
3 ). Let S be the set of nontrivial solutions of F (β,w) = 0,

S =
{

(β,w) ∈ R× U0 : F (β,w) = 0, (β,w) 6= (0, 0)},
viewed as a subset of R × X. We define C ?

3 to be the connected component of S containing
C +

1 = C1 ∩ {β > 0}, and C−2 to be the connected component of S containing C−1 = C1 ∩ {β < 0}.
Finally, we define C +

2 to be the connected component of C ?
3 ∩ {β ≥ 0} containing C +

1 .

Note the inclusions C±1 ⊂ C±2 and C +
2 ⊂ C ?

3 , which are shown in Figure 3a.

Proposition 4.11 (Nodal properties).

(a) The continua C ?
3 and C−2 are disjoint.

(b) All solutions in C−2 have β < 0 and satisfy the nodal depression properties (2.32).
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Figure 3: (a) The curves C±1 and continua C±2 and C ?
3 in Definition 4.10. The curves C±1 are shown

in bold, C±2 \C±1 with a regular stroke, and C ?
3 \C +

2 with dashed lines. (b) The neighborhood V in
the proof of Theorem 4.15. V is the shaded region, and E is the strip with 0 < β < 1

2β+.

A

B
C

β

sup η

Figure 4: The sets A,B,C from the proof of Proposition 4.11. The dashed lines are not in B.

(c) All solutions in C +
2 satisfy the nodal elevation properties (2.31).

(d) All solutions in C ?
3 ∩ {β ≤ 0} have supT w ≥ d∗ − d.

Proof. Recalling that η(q) = w(q, 0), consider the continuous function

f : S → R2, f(β,w) = (β, supT w).

Combining Corollaries 2.5 and 2.6, we find that f(S ) ⊂ A ∪B ∪ C, where

A = {(β, 0) : β < 0}, B = {(β, s) : β, s > 0}, C = {(β, s) : β ≤ 0, s ≥ d∗ − d}.
These sets are depicted in Figure 4. Here A corresponds to waves of depression with β < 0, B
corresponds to waves of elevation with β > 0, and C corresponds to waves with β ≤ 0 which are not
waves of depression. From Theorem 4.7, we know that C−1 meets A and C +

1 meets B. Therefore
C−2 meets A and C ?

3 meets B. Since A and B ∪ C form a separation of A ∪B ∪ C and C−2 and C ?
3

are connected, we deduce that C−2 ⊂ f−1(A) and C ?
3 ⊂ f−1(B ∪ C). In particular, C−2 and C ?

3 are
disjoint.

Next, note that f(C−2 ) ⊂ A implies C−2 ⊂ {β < 0}. We already know that solutions in C−1 ⊂ C−2
satisfy the nodal depression properties (2.32). Since C−2 is connected, Lemmas 2.13 and 2.14 on the
preservation of nodal properties then imply that all solutions in C−2 satisfy (2.32). When applying
these lemmas it is essential that β not change sign on C−2 . Similarly, since C +

2 ⊂ {β ≥ 0} is
connected and contains the curve C +

1 along which the nodal elevation properties (2.31) hold, (2.31)
holds for all solutions in C +

2 . Finally, we observe that C ?
3 ∩ {β ≤ 0} ⊂ f−1(C), and hence that

solutions in C ?
3 ∩ {β ≤ 0} have supT w ≥ d∗ − d.

In order to prove Proposition 4.14, we will use the Healey–Simpson degree summarized in Sec-
tion A.2. To define this degree for our nonlinear operator F (β,w), we need to show that a suitable
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restriction of F is proper. We call a nonlinear mapping F : X → Y proper if F−1(A) is compact
whenever A ⊂ Y is compact. We will show that F is proper using the following simple lemma.

Lemma 4.12. Let X,Y be Banach spaces, U ⊂ X an open set, and F : U → Y a C1 mapping whose
Fréchet derivative Fx(x) is Fredholm for each x ∈ U . Let K ⊂ U ∩ F−1(0), and denote by Kε the
ε-neighborhood of K. If K is compact, then F |Kε : Kε → Y is proper for all ε > 0 sufficiently small.

Proof. First fix x∗ ∈ K. Since L = Fx(x∗) is Fredholm, we can decompose X = X1 ⊕ X2 and
Y = Y1 ⊕ Y2 where X2 = kerL and Y1 = ranL. Using these decompositions we can rewrite the
equation F (x) = y as the system

F1(x1, x2) = y1, (4.8)

F2(x1, x2) = y2, (4.9)

where Dx1F1(x∗1, x
∗
2) = L|X1 : X1 → Y1 is invertible. The implicit function theorem then allows us

to solve (4.8) for x1, that is there exists a neighborhood V ∗ ×W ∗ of (x∗, 0) ∈ U × Y together with
a C1 function x̃1(x2, y1) so that

{
(x, y) ∈ V ∗ ×W ∗ : F1(x1, x2) = y1

}
=
{

(x, y) ∈ V ∗ ×W ∗ : x1 = x̃1(x2, y1)
}
. (4.10)

We claim that F is proper when restricted to V ∗ ∩F−1(W ∗). Suppose that a sequence xn ∈ V ∗ has
F (xn) = yn → y with yn ∈W ∗. We need to show that xn has a convergent subsequence. Since F is
Fredholm, X2 is finite-dimensional, so we can extract a subsequence with xn2 → x2 in X2. But then
(4.10) gives

xn1 = x̃1(xn2 , y
n
1 )→ x̃1(x2, y1)

and hence that xn = (xn1 , x
n
2 ) is convergent, proving the claim. Since V ∗ ∩ F−1(W ∗) contains the

open neighborhood V ∗ ∩ F−1(W ∗) of x∗, F is therefore proper when restricted to Bε(x
∗) for ε > 0

sufficiently small.
Since K is compact, we can therefore find finitely many points x1, . . . , xn ∈ X and ε > 0 such

that K ⊂ ∪iBε(xi) and F is proper when restricted to each B2ε(xi). Therefore F is proper when
restricted to the union ∪iB2ε(xi). Lastly, we note that F−1(0) ⊂ ∪iBε(xi) implies

Kε = {x ∈ U : dist(x,K) < ε} ⊂ ∪iB2ε(xi),

and hence that F is proper when restricted to Kε.

Lemma 4.13. Let K ⊂ (R×U0)∩F−1(0) be compact, and let Kε denote the ε-neighborhood of K.
Then for all ε > 0 sufficiently small, F |Kε

is an admissible generalized homotopy (Definition A.5)
with parameter β.

Proof. First we claim that for (β,w) ∈ R× U0, the linear operator (A,B) = Fw(β,w) is admissible
according to Definition A.2. Condition (i) is Lemma 4.2, condition (iii) is a special case of Lemma 4.4,
and condition (iv) is Lemma 4.6. Finally, condition (ii) is a consequence of condition (iv): By (iv),
there exists κ ∈ C such that (A− κI,B) is onto X → Y1 × Y2. Thus B : X → Y2 must be onto.

Next we claim that, for ε sufficiently small, F (β, · ) : Kε → Y is admissible according to Defini-
tion A.3. We have just shown (ii). By the compactness of K ⊂ R× U0, we can pick ε small enough
that Kε ⊂ R× Uδ for some δ > 0. In particular F |Kε is C2, which implies (i). By the compactness
of K and Lemma 4.12, we can then shrink ε further so that F |Kε is proper, which implies (iii).
Comparing with Definition A.5, we conclude that F |Kε is an admissible generalized homotopy.

We are now ready to prove Proposition 4.14, which will be the core of our proofs of Theorems 1.2
and 1.4. It is also the only place where we use the topological degree.
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Proposition 4.14. Neither C ?
3 nor C−2 is precompact.

Proof. As in [Whe, Theorem 5.2], we follow the proof of Theorem II.6.1 in [Kie04]. Assume for
contradiction that C ?

3 is precompact. Then

K := C ?
3 = C ?

3 ∪ {(0, 0)}
is compact. Letting Kε denote the ε-neighborhood of K, Lemma 4.13 guarantees that there exists
ε0 > 0 such that F |Kε0 : Kε0 → Y is an admissible generalized homotopy with parameter β.

Let β± and w̃(β) be as in Theorem 4.7. Then, for all β− < β < β+, F (β, w̃(β)) = 0 and
Fw(β, w̃(β)) is invertible. Thus by the implicit function theorem we can find 0 < ε1 < ε0/2 so that
w = w̃(β) whenever F (β,w) = 0, ‖w − w̃(β)‖X < 2ε1, and 1

2β− ≤ β ≤ 1
2β+. Define the strip

E =
{

(β,w) : 0 < β < 1
2β+, ‖w − w̃(β)‖X < ε1

}
.

Using the notation Aβ = {w : (β,w) ∈ A} for subsets A of R×X, the above properties of F imply

deg(F (β, · ), Eβ, 0) = (−1)ν(β) 6= 0, 0 < β < 1
2β+, (4.11)

where “deg” is the Healey–Simpson degree summarized in Section A.2 and ν(β) is the number of
positive eigenvalues of Fw(β, w̃(β)) counted according to algebraic multiplicity. We will reach a
contradiction by using additivity and homotopy invariance (Lemmas A.4 and A.6) to show that the
degree in (4.11) vanishes.

We claim that C ?
3 \ E ⊂ K is closed and hence compact. Since C ?

3 is a connected component of
F−1(0)\{(0, 0)}, it is enough to show that (0, 0) is not a limit point of C ?

3 \E. So let (βn, wn) ∈ C ?
3

be a sequence with βn 6= 0 which converges to (0, 0). Applying the implicit function theorem near
(0, 0), we can assume without loss of generality that (βn, wn) ∈ C1. Since C1∩{β < 0} is contained in
C−2 , which is disjoint from C ?

3 by Proposition 4.11(a), we must have βn > 0. But then (βn, wn) ∈ E
for n sufficiently large, which proves the claim.

Since the compact set C ?
3 \ E does not meet either of the closed sets F−1(0) \ C ?

3 or

∂wE =
{

(β,w) : 0 < β < β̃+, ‖w − w̃(β)‖X = ε1

}
,

we can find 0 < ε2 < ε1 such that dist(C ?
3 \E, ∂wE) and dist(C ?

3 \E,F−1(0) \C ?
3 ) are both greater

than ε2. Letting V 1 be the ε2-neighborhood of C ?
3 \ E, we define the bounded open subsets

V := V 1 ∪ E, W := V 1 \ E
of Kε1 . See Figure 3b for an illustration of E and V . We claim that V and W satisfy

E ⊂ V and V ⊂ Kε0 , (4.12a)

V ∩ ∂wE = ∅, (4.12b)

F 6= 0 on ∂V \ {(0, 0)}, (4.12c)

F 6= 0 on ∂W \ {(1
2β+, w̃(1

2β+))}, (4.12d)

Vβ = Wβ ∪ Eβ and Wβ ∩ Eβ = ∅ for 0 < β < 1
2β+. (4.12e)

The first three properties (4.12a)–(4.12c) are straightforward, and (4.12e) is a consequence of (4.12b).
To see the remaining property (4.12d), observe that (0, 0) ∈ F−1(0) \C ?

3 is a positive distance away
from V 1.

We now compute the degree of F on sections of V and W . By (4.12a) and (4.12c), homotopy
invariance (Lemma A.6) implies that deg(F (β, · ), Vβ, 0) is constant for β > 0. Since Vβ = ∅ for β
sufficiently large and positive, this gives

deg(F (β, · ), Vβ, 0) = 0 for β > 0.
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Similarly by (4.12a) and (4.12d), deg(F (β, · ),Wβ, 0) is constant for β < 1
2β+. Since Wβ = ∅ for β

sufficiently large and negative, this yields

deg(F (β, · ),Wβ, 0) = 0 for β < 1
2β+.

Finally, by additivity (Lemma A.4) and (4.12e),

deg(F (β, · ), Eβ, 0) = deg(F (β, · ), Vβ, 0)− deg(F (β, · ),Wβ, 0) for 0 < β < 1
2β+

= 0− 0 = 0,

contradicting (4.11).
The argument for C−2 is similar.

4.4 Second and third continuation

In this final section we will state and prove more precise versions of Theorems 1.2 and 1.4 in the
w, q, p variables. The proofs are straightforward, relying on Proposition 4.9 on compactness, Propo-
sition 4.11 on nodal properties, and Proposition 4.14 on noncompactness. See Definition 4.10 for the
definitions of the continua C±2 and C ?

3 .

Theorem 4.15. Solutions in C−2 have β < 0 and satisfy the nodal depression properties (2.32).
Moreover, C−2 satisfies one of the two alternatives

(i−) (Stagnation) sup
C−2

‖wp‖L∞(Ω) =∞; or

(ii−) (β large and negative) inf
C−2

β = −∞.

Solutions in C +
2 satisfy the nodal elevation properties (2.31), and C +

2 satisfies one of the two alter-
natives

(i+) (Stagnation) sup
C+
2

‖wp‖L∞(Ω) =∞; or

(ii+) (Free wave) There exists a solution other than (β,w) = (0, 0) in C +
2 with β = 0.

Proof. The statements about nodal properties as well as the containment C−2 ⊂ {β < 0} are already
proved in Proposition 4.11, so it only remains show the alternatives. Suppose first that neither of
the alternatives (i−), (ii−) hold for C−2 . Since the nodal depression properties (2.32) hold along C−2 ,
it cannot contain any oscillatory sequences (Definition 3.9). But then Proposition 4.9 implies that
C−2 is precompact, contradicting Proposition 4.14.

Now suppose that neither of the alternatives (i+), (ii+) hold for C +
2 . Then C +

2 ⊂ {β > 0}. Since
C +

2 is the connected component of C ?
3 ∩{β ≥ 0} containing C +

1 , this implies that C ?
3 = C +

2 ⊂ {β > 0}.
In particular, C ?

3 satisfies the nodal elevation properties (2.31) by Proposition 4.11. Applying Propo-
sition 4.9 as before, we deduce that C +

2 = C ?
3 is precompact, violating Proposition 4.14.

Theorem 4.16. Consider the same situation as in Theorem 4.15. Suppose that alternative (i+)
does not hold, so that C +

2 meets {β = 0}. Then

(a) Some solutions in C ?
3 have β < 0, and all solutions in C ?

3 ∩ {β < 0} have supT w ≥ d∗ − d. In
particular, C ?

3 does not meet C−2 .

(b) One of the following three alternatives holds:

(iii) (Stagnation) sup
C ?3 \C+

2

‖wp‖L∞(Ω) =∞; or
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(iv) (β large and negative) inf
C ?3 \C+

2

β = −∞; or

(v) (Oscillation) C ?
3 \ C +

2 contains an oscillatory sequence (βn, wn).

(c) C +
2 is precompact.

Proof. By Theorem 4.15, we know that solutions in C +
2 satisfy the nodal elevation properties (2.31).

Since (i+) does not hold and C +
2 ⊂ {β ≥ 0}, Proposition 4.9 then implies that C +

2 is precompact,
which is (c).

By Proposition 4.11, will have (a) if we can show that C ?
3 ∩ {β < 0} is nonempty. If it were

empty, we would have C ?
3 ⊂ {β ≥ 0} and hence C ?

3 = C +
2 . But then C ?

3 would be precompact by (c),
contradicting Proposition 4.14. To prove (b), assume for contradiction that none of the alternatives
(iii), (iv), (v) hold. Then C ?

3 \ C +
2 is precompact by Proposition 4.9. But then (c) implies that

C ?
3 = C +

2 ∪ (C ?
3 \ C +

2 ) is also precompact, again contradicting Proposition 4.14.

A Appendix

A.1 Examples

In this appendix we will construct an explicit family of solutions of (1.11) with constant vorticity
γ and for certain surface pressures R(x;β). Solutions in this family with β > 0 are monotone
waves of elevation, and those with β < 0 are monotone waves of depression. There are solutions
with β arbitrarily large and negative, as well as solutions with β > 0 which are arbitrarily close
to stagnation, either at their crests or at the point on the bed below the crest. In this sense both
alternatives (ii−) and (i+) from Theorem 1.2 occur.

In Lemma A.1 below, we define these solutions and give several important formulas and qualita-
tive properties. In Section A.1.1, we will compare Lemma A.1 with Section 1.2 and Theorem 1.2. Fi-
nally, we will prove Lemma A.1 in Section A.1.2. Recall the definition Dη = {(x, y) : −d < y < η(x)}
of the fluid domain from Section 1.2.

Lemma A.1. Consider the stream function

ψ(x, y) = ψ(x, y;β) =
β

2
log

(y + d− b)2 + x2

(y + d+ b)2 + x2
− (µ+ dγ)y − γy2

2
, (A.1)

where β ∈ R is a parameter and γ, d, b, µ are constants satisfying 0 < d < b, µ > 0, and µ+ γd > 0.
Also fix the gravitational constant g > 0, and set βB = bµ/2 so that ψy(0,−d;βB) = 0. Then

(a) There exists βT > 0 and a smooth, strictly increasing function

η0 : (−∞, βT )→ (−d,−d+ b)

satisfying η0(0) = 0 and

ψ(0, η0(β);β) = 0, lim
β→−∞

η0(β) = −d, lim
β→−∞

ψy(0, η0(β);β) = −∞,

ψy(0, η0(β);β) < 0, lim
β→βT

η0(β) ∈ (0,−d+ b), lim
β→βT

ψy(0, η0(β);β) = 0.

(b) For all −∞ < β < min(βT , βB) there exists an even free surface profile η( · ;β) ∈ C∞0 (R) with
η(0;β) = η0(β) so that ψ( · ;β) ∈ C∞b (Dη) solves (1.11) with surface pressure R( · ;β) ∈ C∞0 (R)
defined by (1.11d). Here the asymptotic shear flow U , flux m, Bernoulli constant λ, and Froude
number F are given by

c− U(y) = γ(y + d) + µ, m =
γd2

2
+ µd, λ = (γd+ µ)2, F =

√
dγµ+ µ2

√
dg

. (A.2)
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Figure 5: In each plot, the upper curve is the free surface y = η(x;β) with β = min(βT , βB), and
the lower curve is the free surface with β = −1.5. Here d = 1, g = 1, b = 2, F = 3, and µ ≈ 2.57.
Other streamlines of the taller waves are shown in Figure 6.

Moreover, η and R are C∞b functions of (x, β) ∈ R× I for any interval I compactly contained
in (−∞,min(βT , βB)).

(c) The solutions from (b) satisfy the no-stagnation condition supDη ψy < 0 as well as the nodal
properties

βηxx(0;β) < 0, βxηx < 0, βxψx < 0 for −d < y ≤ η(x;β) and βx 6= 0. (A.3)

If β = 0 then η,R, ψx ≡ 0.

(d) The value R(0;β) of the surface pressure at x = 0 tends to −∞ as β → −∞.

A.1.1 Comparison with Section 1.2

Consider the same situation as in Lemma A.1, and let

(u, v, η) = (u(β), v(β), η(β)), −∞ < β < min(βT , βB),

be the smooth curve of solutions of (1.1) given by ψx = −v and ψy = u− c. Defining the connected
sets

C−2 = {(β, u(β), v(β), η(β)) : −∞ < β < 0},
C +

2 = {(β, u(β), v(β), η(β)) : 0 < β < min(βB, βT )},
we have by Lemma A.1(c) that C−2 consists of monotone waves of depression with β < 0 while C +

2

consists of monotone waves of elevation with β > 0. We plot some typical free surfaces in Figure 5.
Since there is a solution (β, u(β), v(β), η(β)) in C−2 for all β < 0, C−2 satisfies alternative (ii−) of
Theorem 1.2.

We claim that alternative (i+) holds for C +
2 . Note that supDη u < c for each fixed β < min(βB, βT )

by Lemma A.1(c). If βB < βT , then as β → βB the wave (u, v, η)(β) approaches stagnation at the
point (−d, 0) on the bed directly below the crest,

sup
Dη

(u− c) ≥ u(0,−d)− c = ψy(0,−d) =
2β

b
− µ↗ 0.

On the other hand if βT ≥ βB, then as β → βT the wave (u, v, η)(β) approaches stagnation at its
crest,

sup
Dη

(u− c) ≥ u(η(0),−d)− c = ψy(η0(β),−d;β)→ 0

by Lemma A.1(a). Streamlines for some limiting waves with stagnation points are shown in Figure 6.
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Figure 6: Streamlines for the tallest waves in Figure 5. Stagnation points are indicated by dots.
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Figure 7: The surface pressures R = R(x;β) for the waves whose free surfaces η are plotted in
Figure 5. The upper curves have β = min(βT , βM ) while the lower curves have β = −1.5.

Next we consider the hypotheses set out in Section 1.2 on the shear flow U and Froude number
F . From (A.2) we know that c − U(y) = γ(y + d) + µ is linear, so U certainly has the regularity
U ∈ C3+α[−d, 0] for any α. Moreover, the maximum value of U(y)−c on [−d, 0] is max(−µ,−µ−γd),
which is negative. However, the assumptions in Lemma A.1 do not imply that the Froude number
is supercritical. Using (A.2) we see that F > 1 is equivalent to µ(µ+ dγ) > 1. (The influence of the
Froude number on the surface pressure R can be seen in (A.6) below.)

The remaining hypotheses in Section 1.2 concern the surface pressures R(x;β). We plot some
typical surface pressures in Figure 7. We have already shown in Lemma A.1 that R is smooth jointly
in x and β and that R(x; 0) ≡ 0. Since R( · ;β) is only defined for β < min(βT , βB), we cannot talk
about the limit of R(0;β) as β → +∞; the limit of R(0;β) as β → min(βT , βB) is easily seen to be
finite. The last two hypotheses on R are

xβRx(x;β) ≤ 0, (A.4)∫

R
sup
|β|<M

|R(x;β)| dx <∞ ∀M > 0. (A.5)

Taylor expanding (A.1) and (1.11d) near y = 0 and x = ±∞, we find

η(x;β) =
2bdβ

dγ + µ
· 1

x2
+O

( 1

x4

)
, R(x;β) = g(F 2 − 1)η(x;β) +O

( 1

x4

)
, (A.6)
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as x→ ±∞, and similarly

ηx(x;β) =
2bdβ

dγ + µ
· 1

x2
+O

( 1

x5

)
, Rx(x;β) = g(F 2 − 1)ηx(x;β) +O

( 1

x5

)
, (A.7)

where the implied constants are uniform for β in any compact subset I of (−∞,min(βB, βT )). From
the first equation (A.6) we have

∫

R
sup
β∈I
|R(x;β)| dx <∞,

which is similar to (A.5). Also, if F > 1, then by (A.7) there exists M = M(I) > 0 so that (A.4)
holds for β ∈ I and |x| > M .

Finally, we numerically investigate the condition (A.4) on R(x;β) for finite values of x. Plotting
R(x;β) for several supercritical Froude numbers F > 1 and a variety of values of d, b, µ, γ, g, it seems
that (A.4) always holds when β < 0. On the other hand, (A.4) does not always seem to hold when β
is sufficiently close to min(βT , βB). This is easy to see in the third plot in Figure 7: the upper curve
R(x;βB) has two local minima at x ≈ ±1.55. Next we consider the upper curves in the other two
plots. These surface pressures R(x;βT ) correspond to the flows in Figure 6 with stagnation points at
their crests. Zooming in very closely near the stagnation point, we appear to have η(x) ≈ η(0)−k|x|
and R(x) ≈ R(0) + gk|x| for some positive constant k. While not visible in Figure 7, this again
seems to violate (A.4). The constant k = |ψxx/ψyy|1/2(0, η(0)) is predicted by a Taylor expansion.

A.1.2 Proof of Lemma A.1

In this section we prove Lemma A.1. The core of the proof is showing that η0(β) and η(x;β) exist
and have the desired properties. Though we will not make use of this fact, we note that the inverse
functions of x 7→ η(x;β) and β 7→ η0(β) both have explicit formulas.

Proof of Lemma A.1. We begin by proving (a). Computing

ψ(0, 0; 0) = 0, ψy(0, 0; 0) = −µ− dγ < 0, ψβ(0, y;β) > 0 for −d < y < −d+ b,

we have by the implicit function theorem there exists a smooth increasing function η0(β) solv-
ing ψ(0, η0(β);β) = 0, defined for |β| sufficiently small and with η0(0) = 0. By a standard ar-
gument based on the implicit function theorem, we can then extend the domain of definition of
η0 to some (possibly infinite) interval (β−, βT ) such that η0 is smooth and strictly increasing on
(β−, βT ), and such that β− < 0 < βT are maximal in the following sense: As β → β− we have
either ψy(0, η0(β);β) → 0 or η0(β) → −d or else β− = −∞, while as β → βT we have either
ψy(0, η0(β);β)→ 0 or η0(β)→ −d+ b or else β− = +∞.

First consider the limit β → β−. Now η0(β) is strictly decreasing, η0(β) < 0 for all β− < β < 0.
For any β < 0 and −d < y < 0 we have

ψy(0, y;β) ≤ −γ(y + d)− µ ≤ −|γ|d− µ < 0,

so this means that ψy(0, η0(β);β) is uniformly bounded above for β− < β < 0, which rules out
ψy(0, η0(β);β) → 0 as β → β−. Since ψ(0,−d;β) = m > 0 for all β, the continuity of ψ also rules
out η0(β) → −d as β → β− unless β− = −∞. Therefore β− = −∞. Taking limits in (A.1), we see
that β → −∞ forces η0(β)→ −d. Taylor expanding, we find

η0(β) = −d− bm

2β
+O

( 1

β2

)
, ψy(0, η0(β);β) =

2β

b
− µ+O

( 1

|β|
)

as β → −∞, and hence ψy(0, η(β);β) → −∞. Next we consider the limit β → βT . For β
large enough, inf−d<y<−d+b ψ(0, y;β) > 0, so βT must be finite. Since ψ(0, y;βT ) → +∞ as
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y → −d + b, we also cannot have η0(β) → −d + b as β → βT . The only remaining possibility
is that ψy(0; η0(β);β)→ 0 as β → βT .

Fix −∞ < β < min(βB, βT ). We claim that supS ψy < 0, where S is the strip

S := {(x, y) : −d < y < η+
0 }, where η+

0 = max(η0, 0), η−0 = min(η0, 0).

Note that S is nonempty and that η0 < −d + b guarantees ψ ∈ C∞b (S). Factoring the rational
expressions for the relevant partials, we find

βxψx ≤ 0 and βxψxy ≤ 0 for −d < y < −d+ b, with equality iff xβ = 0. (A.8)

First consider the case where β > 0. Then η0 > 0 means η+
0 = η0, and βxψxy ≤ 0 implies that

supS ψy is achieved along the vertical line x = 0. Checking that ψy(0, y) is a convex function of
−d < y < η0, we deduce

sup
S
ψy = max{ψy(0,−d), ψy(0, η0)}. (A.9)

Since β < βB, we have ψy(0,−d) = 2β/b−µ < 0, and by part (a) we have ψy(0, η0) < 0. Thus (A.9)
implies supS ψy < 0. Now consider the case where β ≤ 0. Then η+

0 = 0, and βxψxy ≤ 0 implies that
supS ψy is achieved as x→ ±∞. Since limx→±∞ ψy(0, y) is linear, we have

sup
S
ψy = max

{
lim

x→±∞
ψy(0,−d), lim

x→±∞
ψy(0, η0)

}
= max{−µ,−µ− γd} < 0,

thanks to our initial assumptions on µ, γ, d.
Still with β fixed, we next prove the existence of η(x) solving ψ(x, η(x)) = 0 and satisfying the

nodal properties in (c). If β = 0 then ψ(x, 0) ≡ 0 and we can take η ≡ η0 = 0, so assume β 6= 0.
Since ψ(0, η0) = 0 and ψy(0, η0) < 0, we can find a smooth function η(x) solving ψ(x, y) = 0 for |x|
sufficiently small, with η(0) = η0. Since ψx = 0 for x = 0, we have ηx(0) = 0. To extend this local
solution, we need the following additional facts about ψ:

βψ(x, 0) > 0, lim
x→±∞

ψ(x, 0) = 0. βψxx(0, y) < 0 for −d < y ≤ η0, (A.10)

which can be checked by direct computation. By the last inequality in (A.10), βηxx(0) < 0, so
η−0 < η(x) < η+

0 for |x| 6= 0 sufficiently small. Thus by the first inequality in (A.8), βxηx(x) < 0
for |x| 6= 0 sufficiently small. So suppose that this solution η(x) can be smoothly extended to an
interval (−L,L), with

η−0 < η(x) < η+
0 and βxηx(x) < 0 for 0 < |x| < L, (A.11)

and that (−L,L) is the maximal interval for which this is possible. We claim that L = +∞. Assume
not. Since η is strictly increasing or decreasing as x→ ±L, it has a limit

y∗ = lim
x→±L

η(x) ∈ [η−0 , η
+
0 ],

and by continuity ψ(L, y∗) = 0. Since infS ψy < 0 implies ψy(±L, y∗) < 0, we can therefore apply
the implicit function theorem near (±L, y∗) to slightly extend the domain of definition of η. By the
first inequality in (A.8), βηx(L) < 0, so this extension can be made to preserve the second inequality
in (A.11). Thus by the maximality of L, the first set of inequalities in (A.11) must be violated,
i.e. we must have y∗ ∈ {η−0 , η+

0 }. If β < 0, then η is increasing as a function of |x|, so the only
possibility is y∗ = η+

0 = 0. Similarly, if β > 0 then η is a decreasing function of |x|, so the only
possibility is y∗ = η−0 = 0. But by the first inequality in (A.10), ψ(L, 0) 6= 0, so in either case we
have contradicted ψ(L, y∗) = 0. Thus the claim is proved: η(x) is defined and smooth for all x ∈ R
and satisfies the inequalities in (A.11) for x 6= 0. Moreover, η satisfies all of the nodal properties
(A.3).
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With η(x;β) defined, the rest of the lemma is straightforward. Let −∞ < β < min(βT , βB).
First we claim that η → 0 as x → ±∞. By (A.3), η(x;β) has a limit y∗(β) ∈ [η−0 (β), η+

0 (β)] as
x → ±∞. The continuity and decay properties of ψ imply ψ(x, y∗;β) → 0 as x → ∞, which then
forces y∗(β) = 0, proving the claim. Therefore Dη ⊂ S and ψ ∈ C∞b (Dη). Thus supS ψy < 0 implies
supDη ψy < 0. We also compute ∆ψ = −γ on Dη, which is (1.11a). The formulas in (A.2) for the
flux m, Bernoulli constant λ, and Froude number F in (A.2) are easily verified using their definitions
in (1.2) and (1.6) together with the formula for c− U , and the bottom boundary condition (1.11b)
is immediate. The limits ψx → 0 and ψy → U − c as x→ ±∞ are uniform for −d ≤ y ≤ η+

0 , so the
asymptotic conditions (1.11e) are satisfied.

Differentiating ψ(x, η(x;β);β) = 0 with respect to x, we deduce η ∈ C∞0 (R). The surface pressure
R is defined by the boundary condition (1.11d),

R(x;β) = −1
2 |∇ψ|2(x, η(x;β);β)− gη(x;β) + 1

2λ.

Since η, ψx, and ψ2
y − λ are all C∞0 (R) for each fixed β, we have R( · ;β) ∈ C∞0 (R) as well. Also, (a)

implies

R(0;β) = −1
2ψ

2
y(0, η(0;β);β)− gη(0;β) + 1

2λ→ −∞ as β → −∞,
which is (d). The smooth dependence of R and η on β from part (b) is clear from their construction.

A.2 The Healey–Simpson degree

In this appendix we repeat a summary [CS04, Whe] of the key features of the Healey–Simpson
degree [HS98] for the reader’s convenience. This degree is needed for the proof of Proposition 4.14.
First we define a notion of admissibility for linear maps, taken from [HS98, CS04].

Definition A.2. Let X,Y1, Y2 be Banach spaces, with X continuously embedded in Y1, and set
Y = Y1 × Y2. We call a bounded linear operator L = (A,B) : X → Y admissible if

(i) L is a Fredholm operator of index zero.

(ii) B is surjective.

(iii) There exist constants c1, c2 > 0 and α ∈ (0, 1) such that

c1‖u‖X ≤ |κ|α/2‖(A− κI)u‖Y1 + |κ|(1+α)/2‖Bu‖Y2
for all u ∈ X and real κ ≥ C2.

(iv) There exists an open neighborhood N of the ray {µ : µ ≥ 0} ⊂ C such that Σ(A,B)∩N consists
of finitely many eigenvalues, each of finite algebraic multiplicity. Here, as in Definition 4.5,
Σ(A,B) denotes the spectrum of A considered as an unbounded operator Ã : X → Y with
domain D(Ã) = X ∩ kerB.

We next define admissibility for nonlinear operators, again following [HS98, CS04]. We call a
nonlinear mapping F : X → Y proper if F−1(K) is compact whenever K ⊂ Y is compact. We call
F locally proper if D ∩ F−1(K) is compact whenever K ⊂ Y is compact and D ⊂ X is closed and
bounded. Note that all proper maps are locally proper.

Definition A.3. In the setting of Definition A.2, let W ⊂ X be open and bounded. A map
F = (F1, F2) : W → Y is admissible if

(i) F ∈ C2(W,Y ) ∩ C0(W,Y ).

(ii) For each u ∈W , Fu(u) is admissible according to Definition A.2.
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(iii) F : W → Y is locally proper.

Suppose that F : W → Y is admissible and y ∈ Y \F (∂W ) is a regular value of F , so that Fu(u)
is invertible for all u ∈ F−1(y) ∩W . Then F−1(y) ∩W is finite, and we define

deg(F,W, y) =
∑

u∈F−1(y)∩W
(−1)ν(u),

where ν(u) is the number, counted according to algebraic multiplicity, of positive eigenvalues in
Σ(Fu(u)), which is finite by admissibility, and where the sum over the empty set is 0. If y /∈ F (∂W )
is not a regular value, we define deg(F,W, y) to be deg(F,W, ỹ) for some nearby regular value ỹ
which exists by the Sard–Smale theorem; see [HS98].

We need two properties of the degree. The first is additivity:

Lemma A.4 (Additivity). Suppose that W,V ⊂ X are bounded open sets with W ∩V = ∅ and that
F : W ∪ V → Y is admissible. If y /∈ F (∂W ∪ ∂V ), then

deg(F,W ∪ V, y) = deg(F,W, y) + deg(F, V, y).

The second property is homotopy-invariance, proven in [HS98]:

Definition A.5 (Admissible generalized homotopy). For Υ ⊂ [0, 1]×W open, we say thatH : Υ→ Y
is an admissible generalized homotopy if H ∈ C2(Υ, Y ) is locally proper and H(t, · ) is admissible
for each t. We call t ∈ [0, 1] the parameter of the homotopy.

For Υ ⊂ [0, 1]×W and t ∈ [0, 1], set Υt = {u ∈W : (t, u) ∈ Υ}.

Lemma A.6 (Homotopy invariance). If H : Υ → Y is an admissible generalized homotopy, and
y /∈ H(∂Υt) for t ∈ [0, 1], then deg(H(0, · ),Υ0, y) = deg(H(1, · ),Υ1, y).

A.3 Elliptic problems in infinite strips

In this appendix we give several slight variations of standard facts about elliptic problems in infinite
strips, mostly without proofs.

Consider a linear equation

Au = aijDiju+ biDiu+ cu = f in Ω, Bu = σiDiu+ µu = g on T, u = 0 on B, (A.12)

in an infinite strip Ω = {(q, p) ∈ R2 : −m < p < 0} with width m > 0, top boundary T = {p = 0},
and bottom boundary B = {p = −m}. Here D1 = ∂q, D2 = ∂p, and we are using the usual
summation convention. We assume that A is uniformly elliptic and B is uniformly oblique in that
aij = aji, aijξiξj ≥ c|ξ|2, and |σ2| ≥ c for some constant c > 0. We also assume that the coefficients
have the regularity aij , bi, c ∈ Ck−2+α

b (Ω) and µ, σi ∈ Ck−1+α
b (T ) for some integer k ≥ 2 and

α ∈ (0, 1).
Such equations enjoy the following classical Schauder estimate:

Lemma A.7 (Schauder estimate, cf. [ADN59]). If u ∈ Ck+α
b (Ω) of solves (A.12), then

‖u‖Ck+α(Ω) ≤ C(‖f‖Ck−2+α(Ω) + ‖g‖Ck−1+α(T ) + ‖u‖L∞(Ω)), (A.13)

where the constant C depends only on the ellipticity and obliqueness constants and the stated norms
of the coefficients.

Defining the Banach spaces

Xb = {u ∈ Ck+α
b (Ω) : u|B ≡ 0}, Yb = Ck−2+α

b (Ω)× Ck−1+α
b (T ), (A.14)
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the pair (A,B) defines a bounded linear operator L = (A,B) : Xb → Yb. Recall that L is called
locally proper if D ∩ L−1(K) is compact whenever K ⊂ Yb is compact and D ⊂ X is closed and
bounded. Since L is linear, it is locally proper if and only if it has closed range and finite dimensional
kernel, i.e. if it is semi-Fredholm with index < +∞. While the Schauder estimate Lemma A.7 is
sufficient to prove local properness for linear elliptic operators in bounded domains, in an unbounded
domain we need additional conditions at infinity, see [VV03].

We now assume that the coefficients in (A.12) have limits as q → ±∞,

aij(q, p)→ ãij(p), bi(q, p)→ b̃i(p), c(q, p)→ c̃(p), µ(q)→ µ̃, σi(q)→ σ̃i,

and that the limiting coefficients have the regularity ãij , b̃i, c̃ ∈ Ck−2+α[−m, 0]. We then define the
limiting operator

L̃ = (Ã, B̃), Ãu = ãijDiju+ b̃iDiu+ c̃u, B̃u = σ̃iDiu+ µ̃u.

We gave a proof of the following lemma in [Whe], which in turn was a simplified version of the much
more general proof of Volpert and Volpert in [VV03].

Lemma A.8. Assume the homogeneous limiting problem L̃u = 0 has no nontrivial solutions u 6≡ 0
in Xb. Then L : Xb → Yb is locally proper.

Lemma A.8 is easily extended to closed subspaces X0 ⊂ Xb, Y0 ⊂ Yb of functions vanishing at
infinity: Fix an integer 2 ≤ ` ≤ k, and define

X0 = Xb ∩ C`0(Ω), Y0,1 = Ck−2+α
b (Ω) ∩ C`−2

0 (Ω),

Y0 = Y0,1 × Y0,2, Y0,2 = Ck−1+α
b (T ) ∩ C`−1

0 (T ).

One easily checks that L : Xb → Yb restricts to a bounded linear operator X0 → Y0. Moreover, since
X0, Y0 are closed subspaces, we can immediately prove the following:

Lemma A.9. Suppose that L : Xb → Yb is locally proper. Then L : X0 → Y0 is also locally proper.

Proof. Let xn ∈ X0 be a bounded sequence with Lxn = yn → y in Y0. Since L : Xb → Yb is locally
proper, we can extract a subsequence so that xn → x ∈ Xb. Since X0 is a closed subspace, we have
x ∈ X0.

Next we turn to invertibility and Fredholm properties of L : X0 → Y0. The first step is the
following lemma, which is proved using a translation argument (of the sort used to prove Lemma A.8).

Lemma A.10. Assume the homogeneous limiting problem L̃u = 0 has no nontrivial solutions u 6≡ 0
in Xb. Then L−1(Y0) ⊂ X0, i.e. if Lu = (f, g) ∈ Y0 for some u ∈ Xb, then in fact u ∈ X0.

Proof. Suppose that Lu = (Au,Bu) = (f, g) ∈ Y0 for some u ∈ Xb. If u /∈ X0, then there exists a
sequence (qn, pn) ∈ Ω with |qn| → ∞ such that

∑̀

r=0

|Dru(qn, pn)| ≥ δ

for some fixed δ > 0. Consider the shifted functions

un(q, p) = u(q + qn, p), fn(q, p) = f(q + qn, p), gn(q) = g(q + qn),

and the shifted operators

Ln = (An, Bn),

Anϕ = aij(q + qn, p)Dijϕ+ bi(q + qn, p)Diϕ+ c(q + qn, p)ϕ,

Bnϕ = σi(q + qn)Diϕ+ µ(q + qn)ϕ.
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Extracting a subsequence, we can assume that p→ p∗ ∈ [0, d]. Since ‖un‖Ck+α(Ω) = ‖u‖Ck+α(Ω) <∞,

we can also extract a further subsequence so that un → v in Ckloc(Ω), where v ∈ Ck+α
b (Ω). Since

f ∈ C`−2+α
0 (Ω) and g ∈ C`−1+α

0 (T ), we can assume that fn → 0 in C`−2
loc (Ω) and gn → 0 in

C`−1
loc (T ). Finally, we can extract yet again so that Lnun → L̃v in C`−2

loc (Ω) × C`−1
loc (T ). Since

Lnun = (fn, gn)→ 0 in C`−2
loc (Ω)× C`−1

loc (T ), this means L̃v = 0 and hence v ≡ 0. But

∑̀

r=0

|Drv(0, p∗)| = lim
n→∞

∑̀

r=0

|Dru(qn, p
∗)| ≥ δ,

so v 6≡ 0, a contradiction.

Invertibility of L : X0 → Y0 is then an easy corollary:

Corollary A.11. Assume the homogeneous limiting problem L̃u = 0 has no nontrivial solutions
u 6≡ 0 in Xb and that L : Xb → Yb is invertible. Then L : X0 → Y0 is also invertible.

Proof. Since X0 ⊂ Xb, L : X0 → Y0 is clearly one-to-one. To see that it is onto, let y ∈ Y0. Since
L : Xb → Yb is invertible, there exists x ∈ Xb with Lx = y. By Lemma A.10, x ∈ X0.

Similarly we can prove that the Fredholm index is preserved:

Lemma A.12. Assume that the limiting operator L̃ : Xb → Yb is semi-Fredholm with index ν < +∞.
Then L is semi-Fredholm with index ν both Xb → Yb and X0 → Y0.

Proof. Consider the family of operators Lt = L̃+ t(L− L̃) for t ∈ [0, 1]. For each t, Lt is uniformly
elliptic and oblique with limiting operator L̃, so Lemmas A.8 and A.9 imply that Lt is locally proper
Xb → Yb and X0 → Y0. Thus by the continuity of the index, L1 = L has the same Fredholm index
as L0 = L̃, both Xb → Yb and X0 → Y0.

Next we consider subspaces of even functions. Assume that A and B commute with the reflection
operator Su(q, p) = u(−q, p), and let Xe

b denote the subspace of Xb consisting of functions which
are even in q. Defining Y e

b , Xe
0, and Y e

0 similarly, the following lemma is straightforward.

Lemma A.13. Under the above assumption, Lemmas A.8, A.9, A.10, A.12 and Corollary A.11
remain valid if we everywhere replace Xb by Xe

b, Y0 by Y e
0 , and so on. The only exception is that

in Lemmas A.8, A.9, A.10, and A.12 we must in addition require that the homogeneous limiting
problem L̃u = 0 have no nontrivial solutions u ∈ Xb.

Lastly, we state two maximum principles in general unbounded domains. First, we recall the
following simple consequence of the strong maximum principle:

Lemma A.14. Let Ω ⊂ Rn be a domain, possibly unbounded, and suppose that

Lu = aijDiju+ biDiu+ cu

is a uniformly elliptic operator, with aij , bi, c ∈ C0
b(Ω) and c ≤ 0. If u ∈ C2

b(Ω) satisfies u ≥ 0 on
∂Ω, Lu ≤ 0 in Ω, and

lim inf
r→∞

inf
|x|=r

u(x) ≥ 0, (A.15)

then u > 0 in Ω unless u is constant.

Combining Lemma A.14 with the Hopf lemma, we can then easily prove the following:
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Lemma A.15. Let Ω and L be as in Lemma A.14, and let T be a (relatively open) C1 piece of ∂Ω
with outward-pointing normal ν. Suppose that u ∈ C2

b(Ω) satisfies (A.15), Lu ≤ 0 in Ω, u ≥ 0 on
∂Ω \ T , and

diDiu+ fu ≥ 0 on T, (A.16)

where di, f ∈ C0(T ) satisfy diνi > 0 and f > 0. Then u > 0 on Ω ∪ T unless u is constant.

Proof. First we claim that u ≥ 0. Suppose instead thatM = infΩ u < 0. By the asymptotic condition
(A.15) and the maximum principle Lemma A.14, u must achieve M at some point x∗ ∈ ∂Ω. Since
u ≥ 0 on ∂Ω \ T , we must have x∗ ∈ T . Since x∗ is then a critical point of u|T , we have Du = ∂u

∂ν ν
at x∗, so that (A.16) reads

diνi
∂u

∂ν
+ fu ≥ 0 at x = x∗. (A.17)

But the Hopf lemma implies ∂u
∂ν (x∗) < 0, and by assumption diνi, f > 0 and u(x∗) = M < 0. Thus

the left hand side of (A.17) is negative, a contradiction.
Since u ≥ 0, the strong maximum principle implies u > 0 in Ω. It remains to show that u > 0 on

T . Suppose that u(x∗) = 0 for some x∗ ∈ T . Then infΩ u = 0, so (A.17) holds at x∗, contradicting
the Hopf lemma as before.
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