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LARGE-AMPLITUDE SOLITARY WATER WAVES WITH
VORTICITY∗

MILES H. WHEELER†

Abstract. We provide the first construction of exact solitary waves of large amplitude with
an arbitrary distribution of vorticity. We use continuation to construct a global connected set of
symmetric solitary waves of elevation, whose profiles decrease monotonically on either side of a
central crest. This generalizes the classical result of Amick and Toland.
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1. Introduction. The classical water wave problem concerns a two-dimensional,
incompressible, inviscid fluid with unit density under the influence of gravity. At time
t the fluid occupies the region {(x, y) : 0 < y < η(x, t)} in the xy-plane; the bottom
y = 0 is an impermeable horizontal bed, while the top y = η(x, t) is a free surface. The
velocity field (u, v) satisfies the incompressible Euler equations in the fluid domain,
and the pressure P is constant on the free surface. We ignore the effect of surface
tension.

We consider steady traveling waves with speed c > 0, for which u, v, η, P depend
only x− ct and y. This allows us to eliminate time t from the equations by switching
to moving coordinates (x− ct, y) �→ (x, y). In these coordinates the fluid region is

Dη = {(x, y) ∈ R2 : 0 < y < η(x)}.

Solitary waves are traveling waves satisfying the asymptotic conditions

η → d, v → 0, u→ U(y) as x→ ±∞,

uniformly in y. Here d > 0 is the asymptotic depth of the fluid and U(y) describes
the shear flow at x = ±∞.

We will work with a one-parameter family of shear flows

U(y) = c− FU∗(y),(1.1)

where F is a positive dimensionless parameter and U∗ is a fixed positive function,
normalized so that

g

∫ d

0

dy

U∗(y)2
= 1,

1

F 2
= g

∫ d

0

dy

(c− U(y))2
.(1.2)

We call U∗ the relative shear flow at infinity and F the generalized Froude number.
We call a wave supercritical if F > 1 and subcritical if F < 1. Local curves Cloc of
small-amplitude supercritical solitary waves with F slightly bigger than 1 have been
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constructed by Ter-Krikorov [44], Hur [20], and Groves andWahlén [18] (see section 4).
In this paper we will construct large-amplitude supercritical solitary waves.

We assume that u < c throughout the fluid, which in particular means there
cannot be any stagnation points (x, y) where (u, v) = (c, 0). These are points where
“stagnant” fluid particles are carried along with the wave. We call a solitary wave
symmetric if u and η are even in x, and v is odd in x. We call a symmetric wave
monotone if in addition η(x) is strictly decreasing for x > 0. We call a solitary wave
trivial if η ≡ d, v ≡ 0, and u ≡ U(y), and a wave of elevation if η(x) > d for all x ∈ R.

We define a depth d∗ ∈ (d,∞] in terms of the shear profile U∗ by

d∗ =

∫ d

0

U∗(y) dy√
U∗(y)2 − (U∗

min)
2
, where U∗

min = min
y∈[0,d]

U∗(y).(1.3)

This is the maximum depth of a family of trivial flows considered in section 2 which
generalize the one-parameter family U = c−FU∗. We remark that when U∗ = ay+ b
is linear so that the vorticity ω = Fa is constant, we have d∗ = ∞ for a = 0 and
d∗ <∞ for a �= 0.

Our main result is the following.
Theorem 1.1. Fix g, c, d > 0, a Hölder parameter β ∈ (0, 12 ], and a strictly

positive relative shear flow U∗ ∈ C2+β [0, d] satisfying the normalization condition
(1.2). Then, there exists a connected set C of solitary waves

(u, v, η, F ) ∈ C1+β(Dη)× C1+β(Dη)× C2+β(R)× (1,∞),

where F determines the flow U at infinity via (1.1), with the following properties. C
contains the local curve Cloc. Each wave (u, v, η, F ) ∈ C is a symmetric monotone
supercritical wave of elevation with u < c. In addition, one of the following three
alternatives holds:

(i) (Stagnation) There is a sequence of flows (un, vn, ηn, Fn) ∈ C and a sequence
of points (xn, yn) such that un(xn, yn) ↗ c; or

(ii) (Large amplitude and Froude number) There exists a sequence of flows
(un, vn, ηn, Fn) ∈ C with both Fn ↗ ∞ and limn→∞ ηn(0) ≥ d∗; or

(iii) (Critical wave) There exists a solitary wave of elevation (u, v, η, F ) in the
closure of C with critical Froude number F = 1.

Alternative (i), stagnation, means that there are solitary waves in C nearly vi-
olating our assumption u < c. We make no claim that v is simultaneously near 0.
Alternative (ii) means there are waves with an arbitrarily large Froude number and
whose maximum height approaches or exceeds d∗. Note that, since waves in C are
symmetric and monotone, η(0) = max η. Finally, alternative (iii) guarantees the ex-
istence of a solitary wave of elevation with a critical Froude number. It is an open
question if there exist relative shear flows U∗ for which alternatives (ii) or (iii) actually
occur.

As for regularity, it is known that the streamlines of each wave in C are analytic,
except possibly for the free surface y = η(x) [22]. Moreover, if U∗ has the additional
regularity U∗ ∈ Ck+β for k ≥ 3, one can construct a continuum C of solutions with
the additional regularity u, v ∈ Ck−1+β and η ∈ Ck+β . For simplicity, in this paper
we will restrict ourselves to k = 2.

We now specialize Theorem 1.1 to the irrotational case where U∗ =
√
gd is con-

stant. Since symmetric monotone supercritical solitary waves have F < 2 [3], alterna-
tive (ii) cannot occur. Moreover, there are no nontrivial waves with a critical Froude
number [28, 33], so alternative (iii) cannot occur either. Thus alternative (i) holds.
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For irrotational and symmetric solitary waves, u is always maximized at the crest
(0, η(0)), so we must have

un(0, ηn(0)) → c

for some sequence (un, vn, ηn, Fn) ∈ C . This recovers a result of Amick and Toland,
part (c) of Theorem 3.9 in [3].

Small-amplitude irrotational periodic waves were first constructed in the 1920s by
Nekrasov [37] and Levi-Civita [31] using conformal mappings and power series expan-
sions. Such conformal mappings are only available in the irrotational case. In 1934,
Dubreil-Jacotin [12] devised a nonconformal coordinate transformation which permits
the construction of small-amplitude periodic waves with vorticity. Subsequently, the
existence of small-amplitude periodic waves has been reformulated as a bifurcation
problem. This method relies heavily on compactness or Fredholm properties of the
linearized operator. The periodic waves in all the above references are subcritical.

Constructing small-amplitude solitary waves is much more difficult. The domain
is not bounded, and the linearized operator is nonFredholm, so we no longer have a
standard bifurcation problem. Solutions were constructed as long-wavelength limits
of periodic waves [30, 43] and using an iteration method [15]. Beale [4] used a Nash–
Moser implicit function theorem, and Mielke [36] used spatial dynamics methods,
reformulating the water wave problem as an evolution equation with the horizontal
variable x playing the role of time and performing a center-manifold type reduction to
a two-dimensional equation. All of these constructions involve some sort of rescaling
of the horizontal variable x.

As in the periodic case, the presence of vorticity complicates the construction
of small-amplitude solitary waves, in particular by preventing the use of conformal
mappings. For formal results see [5, 7, 14]. The first rigorous construction is due
to Ter-Krikorov [44]. Later Hur [20] generalized the methods of [4], and shortly
thereafter Groves and Wahlén [18] gave an alternate proof using spatial dynamics
methods. The solitary waves in all of the above references (rotational and irrotational)
are supercritical. Although irrotational symmetric monotone waves of elevation are
necessarily supercritical [33], this is not known in general.

We will construct large-amplitude solitary waves with vorticity by continuing from
waves with small amplitude. This construction, however, requires more information
about small-amplitude waves than is given in [20] or [18]. Most importantly, we need
to show that certain linearized operators are invertible. Compared with [20], [18] gives
a more detailed description of the solutions, identifying them with the homoclinic or-
bits of a two-dimensional reduced equation. In order to prove invertibility, we linearize
each step of the reduction in [18], analyze the linearization of the reduced equation,
and reverse the various changes of variable. We also show that these small-amplitude
solitary waves are the unique such waves with nearly critical Froude number.

Large-amplitude irrotational periodic waves were first constructed by Krasovskĭı
[29]. Keady and Norbury [24] later used the global bifurcation theory of Rabinowitz
[41] to obtain a connected set of solutions. Toland [45] and McLeod [34] showed that
this continuum of solutions contained a wave with a stagnation point at its crest,
proving the celebrated Stokes conjecture [42]. In the case of vorticity, Constantin
and Strauss [9] constructed large-amplitude waves including a sequence of waves ap-
proaching stagnation in that supun ↗ c. While the maximum value of u must occur
at the crest for irrotational waves [45], numerical evidence implies that this is not
always the case with vorticity [27]. Because of the vorticity, Constantin and Strauss
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cannot reduce the water wave problem to an integral equation on the boundary as
in all the irrotational papers. Instead, they apply the Dubreil-Jacotin transforma-
tion, obtaining a nonlinear elliptic boundary value problem with a fully nonlinear
boundary condition. In order to extend a local curve of small-amplitude solutions,
they use global bifurcation theory, which is based on topological degree arguments.
Because of the nonlinear boundary condition, they use a degree developed by Healey
and Simpson [19] instead of the usual Leray–Schauder degree.

Large-amplitude solitary waves are much more difficult to construct than large-
amplitude periodic waves. As with the small-amplitude problem, this is due to the
unboundedness of the domain and the non-Fredholmness of the linearized operator.
In addition to preventing the use of a Lyapunov–Schmidt argument, this singular
behavior is an obstruction to defining a topological degree. The construction of large-
amplitude irrotational solitary waves is due to Amick and Toland [2, 3]. In order to
get around the above obstruction, they apply the usual global bifurcation theory to
a sequence of approximate problems. Taking weak limits, they then construct a con-
nected set of solitary waves, including waves which are arbitrarily close to stagnation
at their crests. In [2], the approximate problems are periodic water wave problems
with increasing wavelengths. Both papers make use of conformal mappings to reduce
the solitary water wave problem to a Nekrasov-type integral equation on the free sur-
face. Large-amplitude solitary waves are also constructed in [6]. Until now, there has
been no existence theory for large-amplitude solitary water waves with vorticity. The
problem can no longer be reduced to an integral equation on the free surface, and the
method of approximate problems seems not to work.

Our approach to constructing large-amplitude waves is quite different from [2, 3]
and does not involve approximate problems. As in [9], the main ingredient is the
topological degree. In order to avoid the singular behavior at F = 1, we work with
waves whose Froude number is uniformly supercritical, say F > 1 + δ for some small
parameter δ > 0. This restriction is helpful because the linearized operators with
F > 1 are Fredholm with index 0. We also need to verify a crucial compactness
condition called local properness, and for this we work in weighted Hölder spaces and
use results of Volpert and Volpert [48] for general elliptic problems in unbounded
domains. Because the degree is only defined for F > 1, we need an alternate theory
for small-amplitude waves, and this is where we use the methods and results of [18].
For δ sufficiently small, we first find a nontrivial solitary wave with F > 1 + δ whose
associated linearized operator is invertible. Then we use our topological degree to-
gether with a continuation argument in the spirit of Rabinowitz (see [26] and [41]) to
obtain a global continuum of solutions with F > 1 + δ. Theorem 1.1 is finally proved
by sending δ → 0 and analyzing the various alternatives.

In section 1.1, we perform the Dubreil-Jacotin transformation, which, under
our no-stagnation assumption u < c, transforms the solitary water wave problem
into an elliptic boundary value problem for a function w(x, s) in the infinite strip
Ω = R × (0, 1). We use the divergence formulation first introduced in [10], and the
dimensionless variables from [18]. The equation is quasilinear with a fully nonlinear
boundary condition on the upper boundary of Ω. Using these variables, we define the
global continuum C , making precise the sense in which it is connected. We also state
Theorem 1.3, which is a more precise version of Theorem 1.1.

In section 2, we derive several properties of solitary waves with u < c. First,
we introduce a standard family of trivial flows. The maximum depth of these flows
is the depth d∗ > d appearing in Theorem 1.1 and defined in (1.3). Using a max-
imum principle argument to compare solitary waves to these trivial flows, we show
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that all nontrivial solitary waves with F ≥ 1 are waves of elevation. This answers a
question raised in [21] and implies that all nontrivial supercritical solitary waves are
monotone symmetric waves of elevation. The converse, that symmetric and mono-
tone waves of elevation are supercritical, is known in the irrotational case [33] but
not in general. A similar maximum principle argument shows that F can be bounded
above by a constant depending only on U∗ and the maximum height max η, provided
d < max η < d∗. Similar bounds and elevation, symmetry, and monotonicity prop-
erties were shown by Craig and Sternberg in the irrotational case [11]. Finally, we
prove an equidecay property for certain families of supercritical solitary waves, which
is new even for irrotational waves. We use an invariant sometimes called the flow force
together with the above monotonicity result, a lower bound on the pressure [46], and
a translation argument inspired by [39]. Similar arguments may be useful in studying
monotone solutions to other problems in infinite cylinders.

In section 3, we formulate the solitary water wave problem as a nonlinear opera-
tor equation. When the Froude number is uniformly bounded away from 1 and +∞,
we show that this nonlinear operator has all of the properties necessary to define the
topological degree, which we will do in section 5. This is more subtle than in the
periodic case because of the unbounded domain, which causes a loss of compactness.
Though the necessary lemmas are nonstandard, they are relatively straightforward
to prove, depending essentially only on the domain, ellipticity, and the divergence
structure of the equation. Since we will need similar results again in section 5, we
defer many of these lemmas to Appendix A. In section 3.2, we show that the lin-
earized operators are Fredholm of index 0 when F > 1, and we analyze their spectral
properties in section 3.3. In section 3.4, we show that the nonlinear operator satisfies
a compactness condition called local properness. Here we use an argument from [48]
that requires a weight σ as x→ ±∞. The weight function σ is assumed to be smooth,
to have σ → ∞ as x→ ±∞, and to satisfy a subexponential growth condition, but is
otherwise arbitrary. It is worth emphasizing that section 3.4 is the only place in the
paper where weights are truly essential. The weight function σ is left arbitrary in the
bulk of the paper but is eventually fixed in sections 5.6 and 5.7.

In section 4, we study small-amplitude solitary waves using the methods and re-
sults of [18]. Our main result is that the operators obtained by linearizing about
these solutions are invertible. In section 4.1, we perform the various changes of vari-
able which transform the water wave problem into an evolution equation with x
playing the role of time. This is the only place where the assumption β ≤ 1/2 in
Theorem 1.1 is convenient. In section 4.2, we consider the linearized problem and
prove an exponential-dichotomy type result. In section 4.3, we exhibit the construc-
tion of a two-dimensional center manifold containing all small bounded solutions and
consider the reduced two-dimensional equation on this manifold. This is a reduction
analogous to the Lyapunov–Schmidt method for bifurcation problems. In each of
the above steps we need a more detailed description than is provided by [18], and in
particular more information concerning the various linearized problems. Combining
this information with an elementary fact about homoclinic orbits of two-dimensional
equations, we prove the desired invertibility in section 4.4. Finally, we use the reduced
system together with the elevation result from section 2 to conclude that there is a
unique small-amplitude solitary wave for each Froude number slightly greater than 1.

Section 5 is devoted to the proof of Theorem 1.1. In section 5.1, we define a
weighted continuum C δ

σ ⊂ C of solutions depending on a weight function σ to be cho-
sen later and a small parameter δ > 0. In section 5.2, we use the invertibility results of
section 3 and 4 to analyze the connectedness properties of C and C δ

σ . In section 5.3,
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we define the Healey–Simpson degree for the nonlinear operator introduced in sec-
tion 3. In section 5.4, we apply a degree-theoretic “global implicit function theorem”
[26] near one of the small-amplitude solutions in Cloc, again using the invertibility
from section 4. We are left with several possibilities for the weighted continuum C δ

σ :
either it is unbounded, or it contains new waves whose Froude number F is δ-close
to 1 or +∞. If C δ

σ is unbounded, then, letting w be the function defined in sec-
tion 1.1, there is a sequence in C δ

σ with ‖σwn‖C2+β → ∞. In section 5.5, we reduce
this condition to one involving fewer partial derivatives. This is done by combining
regularity results for fully nonlinear elliptic problems due to Lieberman [32] with the
weighted Schauder estimates from Appendix A and the lower bound on the pressure
from section 2. In sections 5.6 and 5.7, we assume that alternative (i) of Theorem 1.1,
stagnation, does not hold, and apply the equidecay result from section 2 to construct
a weight function σ for which ‖σw‖C2+β is uniformly bounded along the unweighted
continuum C . We then send δ → 0 and address the remaining possibilities, that the
Froude number F might approach 1 or +∞. For large F , we apply the lower bound
on the maximum height from section 2 to obtain alternative (ii), while for F near 1
the uniqueness result from section 4 leads to alternative (iii).

Appendix A is a collection of lemmas on linear and nonlinear elliptic problems
in unbounded domains (infinite strips in particular) which are used throughout the
paper. We prove Schauder-type estimates as well as local properness and invert-
ibility properties in both weighted and unweighted Hölder spaces. To prove local
properness, we use ideas from [48], which considers general elliptic systems in gen-
eral unbounded domains. In particular, we introduce the notion of so-called limiting
problems obtained by sending the horizontal variable x→ ±∞ in the coefficients. For
the reader’s convenience, we provide greatly simplified proofs of some results in [48]
in our more restricted setting.

1.1. Reformulation. Let Ω ⊂ Rn be a domain, possibly unbounded. We say
that ϕ ∈ C∞

c (Ω) if ϕ ∈ C∞(Ω) and the support of ϕ is a compact subset of Ω.
Similarly ϕ ∈ C∞

c (Ω) if ϕ ∈ C∞(Ω) and the support of ϕ is a compact subset of Ω.
For k ∈ N and β ∈ [0, 1), we denote the Ck+β Hölder norm of a function u on Ω by
|u|k+β;Ω. When Ω is clear from context, we will simply write |u|k+β . We say that
u ∈ Ck+β(Ω) if |ϕu|k+β < ∞ for all ϕ ∈ C∞

c (Ω), u ∈ Ck+β(Ω) if |ϕu|k+β < ∞ for

all ϕ ∈ C∞
c (Ω), and u ∈ Ck+β

b (Ω) if |u|k+β <∞. We say that un → u in Ck+β
loc (Ω) if

|ϕ(un − u)|k+β → 0 for all ϕ ∈ C∞
c (Ω).

Having eliminated time t through the change of variables (x− ct, y) �→ (x, y), the
velocity field (u, v) satisfies

(u− c)ux + vuy = −Px, (u− c)vx + vvy = −Py − g, ux + vy = 0(1.4a)

in the fluid domain Dη together with the boundary conditions

v = 0 on y = 0, v = (u− c)ηx on y = η(x), P = Patm on y = η(x)(1.4b)

and the asymptotic conditions

η → d, v → 0, u→ U(y) = c− FU∗(y) as x→ ±∞,(1.4c)

uniformly in y. Here Patm is the (constant) atmospheric pressure, g > 0 is the
gravitational constant of acceleration, d is the asymptotic depth, c > 0 is the wave
speed, U∗ > 0 is the relative shear flow at infinity, and F > 0 is the generalized
Froude number.
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Our first step is to eliminate the pressure by introducing the (relative) stream
function ψ, defined by

ψx = −v, ψy = u− c, ψ(x, 0) = 0.

The assumption u− c = ψy < 0 guarantees [9] that

ω = vx − uy = −Δψ = γ(ψ)

for some function γ called the vorticity function.
In terms of ψ, γ, and η, (1.4) can then be rewritten as⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δψ = −γ(ψ) in 0 < y < η(x),

ψ = 0 on y = 0,

ψ = m on y = η(x),

1
2 |∇ψ|2 + g(η − d) = λ

2 on y = η(x),

(1.5a)

together with the asymptotic conditions

η → d, ψx → 0, ψy → −FU∗(y) as x→ ±∞,(1.5b)

uniformly in y. Here (as can been seem from (1.5b)) the flux m < 0 and Bernoulli
constant λ appearing in (1.5a) are given in terms of the relative shear flow U∗ at
infinity and Froude number F by

m = −F
∫ d

0

U∗(y) dy, λ = (FU∗(d))2,(1.6)

and the vorticity function γ is given in terms of U∗ and F by

γ(−s) = FU∗
y (y), where s = F

∫ y

0

U∗ dy′.(1.7)

This last definition (1.7) makes use of the fact that s is strictly increasing as a function
of y, running from 0 to −m.

Following [18], we define the dimensionless variables

(x̃, ỹ) =
1

d
(x, y), η̃(x̃) =

1

d
η(x), ψ̃(x̃, ỹ) =

1

|m|ψ(x, y), γ̃(ψ̃) =
d2

|m|γ(ψ),(1.8)

where we have rescaled lengths by d and velocities by |m|/d. In these variables (1.5a)
becomes ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δψ̃ = −γ̃(ψ̃) in 0 < ỹ < η̃(x̃),

ψ̃ = 0 on ỹ = 0,

ψ̃ = −1 on ỹ = η̃(x̃),

1

2
|∇ψ̃|2 + α(η̃ − 1) =

μ

2
on ỹ = η̃(x̃),

(1.9a)

and the asymptotic condition (1.5b) becomes

ψ̃x̃ → 0, η̃ → 1, ψ̃ỹ(x̃, ỹ) → − U∗(ỹd)d∫ d
0 U

∗ dy
as x̃→ ±∞,(1.9b)
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uniformly in ỹ, where α is the rescaled gravity and μ is the rescaled Bernoulli constant,

α =
gd3

m2
=
gd3

F 2

(∫ d

0

U∗ dy

)−2

,(1.10)

μ =
λd2

m2
= d2(U∗(d))2

(∫ d

0

U∗ dy

)−2

.

The asymptotic condition (1.9b) and ψ̃(x̃, 0) = 0 imply

ψ̃(x̃, ỹ) → Ψ̃(ỹ) := −
∫ dỹ
0 U∗(y) dy∫ d
0
U∗(y) dy

as x→ ±∞,

uniformly in ỹ.
The critical value α = αcr corresponding to F = 1 is given by

αcr = gd3

(∫ d

0

U∗ dy

)−2

(1.11)

with α < 1 for F > 1 and α > 1 for F < 1. The dimensionless vorticity function γ̃ is
given implicitly in terms of the relative shear flow U∗ at infinity by

γ̃(−s̃) = d2U∗
y (y)∫ d

0
U∗ dy

, where s̃ =

∫ y
0
U∗ dy∫ d

0
U∗ dy

.(1.12)

In Theorem 1.1, g, d, U∗ are fixed while F is a parameter. Looking at (1.10)–(1.12),
we see that μ, γ̃ are fixed, while α is proportional to 1/F 2. This is an advantage over
the original dimensional variables, where λ and γ both depended on F .

We next apply the Dubreil-Jacotin transformation [12]. Setting

s̃ = −ψ̃(x̃, ỹ), h̃ = ỹ,(1.13)

we treat (x̃, s̃) ∈ R × (0, 1) as independent variables and h̃(x̃, s̃) as the dependent
variable, transforming the domain of the problem into the (fixed) infinite strip Ω =
R× (0, 1). In these new variables (1.5) is equivalent to [9](

h̃x̃

h̃s̃

)
x̃

−
(
1 + h̃2x̃
2h̃2s̃

)
s̃

+ γ̃(−s̃) = 0 0 < s̃ < 1,(1.14a)

1 + h̃2x̃
2h̃2s̃

+ α(h̃− 1) =
μ

2
s̃ = 1,(1.14b)

h̃ = 0 s̃ = 0,(1.14c)

together with the asymptotic condition

h̃(x̃, s̃) → H̃(s̃), h̃x̃ → 0, h̃s̃ → H̃s̃ as x̃→ ±∞,(1.14d)

uniformly in s̃. The asymptotic height function H̃ is the solution of the differential
equation

H̃s̃(s̃) = − 1

Ψ̃ỹ(H̃(s̃))
=

∫ d
0
U∗ dy

U∗(H̃(s̃)d)d
, H̃(0) = 0,
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and satisfies H̃(1) = 1. This can be seen, for instance, from the equivalent definition∫ H̃(s̃)d

0

U∗ dy = s̃

∫ d

0

U∗ dy.(1.15)

The divergence form of (1.14) first appeared in [10]. We emphasize that the physical
shear flow U(y) = c − FU∗(y) represented by H̃ depends on the Froude number F ,
even though the formula (1.15) does not. The dimensionless height function h̃ is
related to the original variables u, v,m, d by

h̃s̃(x̃, s̃) = − 1

ψ̃ỹ(x̃, ỹ)
=

|m|
d

1

c− u(x, y)
, h̃x̃(x̃, s̃) = − ψ̃x̃(x̃, s̃)

ψ̃ỹ(x̃, ỹ)
=

v(x, y)

u(x, y)− c
.

(1.16)

In particular, our assumption u− c = ψy < 0 is equivalent to h̃s̃ > 0, so the quotients

appearing in (1.14) are well defined. For h̃ ∈ C2
b(Ω), we will show in section 3.1 that

infΩ h̃s̃ > 0 implies that (1.14a) is uniformly elliptic and that the boundary condition
(1.14b) is uniformly oblique. This is a major advantage of the divergence formulation
[10] over the nondivergence formulation, in which an extra condition is needed to
ensure obliqueness [9].

To simplify notation we will from now on drop the tildes on dimensionless vari-
ables. Since we will often be interested in the rates of decay in (1.14d), we define

w(x, s) := h(x, s)−H(s)(1.17)

and work with w instead of h. Similarly, since small-amplitude waves have α close to
αcr and less than αcr, we work with

ζ := αcr − α.(1.18)

Thus ζ is positive for supercritical waves and negative for subcritical waves, and the
small-amplitude waves constructed in [18, 20] have ζ small and positive. Since α > 0
(see its definition (1.10)), we will always assume ζ < αcr.

We ultimately formulate the solitary water wave problem in terms of (ζ, w). The
nonlinear equations (1.14a) and (1.14b) become(

wx

Hs + ws

)
x

+

(
− 1 + w2

x

2(Hs + ws)2

)
s

+ γ(−s) = 0 0 < s < 1,(1.19a)

1 + w2
x

2(Hs + ws)2
+ (αcr − ζ)w =

μ

2
s = 1.(1.19b)

The remaining conditions that we place on (ζ, w) are

ζ < αcr,(1.19c)

w = 0 on s = 0,(1.19d)

w ∈ C2+β
b (Ω),(1.19e)

w, Dw, D2w → 0, as x→ ±∞,(1.19f)

inf
Ω
(Hs + ws) > 0,(1.19g)

w is even in x.(1.19h)
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|ws|0

ζ
ζ = αcr

(i)

(ii)

(iii)

∞

C

Fig. 1. The three alternatives in Theorem 1.3.

The first condition (1.19c) enforces the positivity of α (defined in (1.10)), while (1.19d)
is (1.14c). The asymptotic condition (1.19f) is a stronger version of (1.14d) also
involving second derivatives, (1.19g) enforces hs > 0, and (1.19h) enforces symmetry.

From now on, we will refer to a pair (ζ, w) satisfying (1.19) as a solitary wave.
We call (ζ, w) supercritical if ζ > 0, trivial if w ≡ 0, a wave of elevation if w(x, 1) > 0
for all x ∈ R, and monotone if wx < 0 for x > 0. We will see in the proof of
Proposition 1.4 below that this terminology is consistent with our earlier definitions
in terms of (u, v, η, F ).

Definition 1.2 (global continuum). The set S of supercritical waves is

S =
{
(ζ, w) : (ζ, w) satisfies (1.19), 0 < ζ < αcr

}
,

which we view as a subset of R×C2+β
b (Ω). The global continuum C is the connected

component of S in R × C2+β
b (Ω) containing the local curve Cloc of small-amplitude

solutions.
We note that S contains trivial solutions (ζ, 0) with ζ > 0. We will show in

section 5.2 that C contains only nontrivial solutions w �≡ 0.
We now show that Theorem 1.1 is implied by the following theorem in the (ζ, w)

variables, whose alternatives are illustrated in Figure 1.
Theorem 1.3. Fix g, c, d > 0, a Hölder parameter β ∈ (0, 12 ], and a strictly

positive relative shear flow U∗ ∈ C2+β [0, d] satisfying the normalization condition
(1.2). Defining the global continuum C as above, all solutions (ζ, w) ∈ C satisfy
w(x, 1) > 0 for x ∈ R as well as wx < 0 for x > 0 and 0 < s ≤ 1. In addition, one of
the following three alternatives holds:

(i) sup(ζ,w)∈C |ws|0 = ∞;
(ii) sup(ζ,w)∈C ζ = αcr; or
(iii) there exists a solution (0, w) in the closure of C with w(x, 1) > 0 for x ∈ R.

If alternative (ii) holds, then there exists a sequence (ζn, wn) ∈ C with both ζn → αcr

and

lim
n→∞wn(0, 1) ≥ d∗/d− 1.

Proposition 1.4. Theorem 1.3 implies Theorem 1.1.
Proof. We reintroduce the notation (1.8) to differentiate between dimensionless

and dimensional versions of x, y, η, h, ψ. Recall that lengths are rescaled by d and
velocities by |m|/d. The proof that solutions (ζ, w) of (1.19) yield solutions (u, v, η, F )
of (1.4) with u < c is nearly identical to the one found in [9] and is omitted.

Suppose that (ζ, w) ∈ C corresponds to a solitary wave (u, v, η, F ). Combining
(1.10), (1.11), and (1.18), we get

F =

(
αcr

αcr − ζ

)1/2
,(1.20)
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where we recall that αcr > 0 is fixed and given in (1.11). Thus the condition
0 < ζ < αcr appearing in the definition of S (and hence the definition of C ) is equiv-
alent to supercriticality 1 < F <∞. Next we use (1.13) and (1.17) together with the
scaling (1.8) to get

η(x) = d(1 + w(x̃, 1)).(1.21)

Thus w(x̃, 1) > 0 for all x ∈ R is equivalent to (u, v, η, F ) being a wave of elevation,
η(x) > d for x ∈ R. Similarly, wx < 0 for x > 0 and 0 < s ≤ 1 implies the
monotonicity of (u, v, η, F ), ηx < 0 for x > 0.

Combining (1.16) (which follows from (1.13)) and the scaling (1.8), we find

d

|m| (c− u(x, y)) =
1

h̃s̃(x̃, s̃)
=

1

H̃s̃(s̃) + ws̃(x̃, s̃)
,(1.22)

d

|m|v(x, y) =
h̃x̃(x̃, s̃)

h̃s̃(x̃, s̃)
=

wx̃(x̃, s̃)

H̃s̃(s̃) + ws̃(x̃, s̃)
.

Thus the evenness of w in x̃, (1.19h), is equivalent to the symmetry of (u, v, η, F ).
Using the definition (1.6) of m, we find

d

|m| =
d

F
∫ d
0 U

∗(y) dy
=:

C1

F

for some positive constant C1. Thus (1.22) can be rewritten

C1

F
(c− u(x, y)) =

1

H̃s̃(s̃) + ws̃(x̃, s̃)
.(1.23)

Assume that alternative (ii) holds in Theorem 1.3. Then there exists a sequence
(ζn, wn) ∈ C with ζn ↗ αcr and limn→∞ wn(0, 1) ≥ d∗/d− 1. Letting (un, vn, ηn, Fn)
be the corresponding solitary waves, we have from (1.20) that Fn → ∞, and from
(1.21) that

lim
n→∞ ηn(0) = d

(
1 + lim

n→∞wn(0, 1)
)
≥ d∗.

Thus alternative (ii) holds in Theorem 1.1.
Now suppose that alternative (iii) holds in Theorem 1.3. Then there exists a

solution (0, w) in the closure of C with w(x, 1) > 0 for all x ∈ R. From (1.20) we
see that the corresponding wave (u, v, η, F ) has F = 1, and from (1.21) we see that
η(x) > d for all x ∈ R. Thus alternative (iii) of Theorem 1.1 holds.

Finally, suppose in Theorem 1.3 that alternative (i) holds while alternative (ii)
does not hold. Then sup(ζ,w)∈C ζ < αcr. By (1.20), solitary waves (u, v, η, F ) corre-
sponding to (ζ, w) ∈ C have F > δ for some uniform δ > 0. Now we use (1.23). Since
H̃ is fixed, alternative (i) in Theorem 1.3 means that there exists a sequence of waves
(un, vn, ηn, Fn) in C and points (xn, yn) with

C1

Fn
(c− un(xn, yn)) → 0.

But Fn > δ for each n, so this can only happen if un(xn, yn) → c, which is alterna-
tive (i) of Theorem 1.1.
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In the remainder of the paper we eliminate the shear profile U∗ in favor of the
vorticity function γ. It is customary [9, 18, 20] to define

Γ(s) = −
∫ 1

s

γ(−t) dt, a(s) =
√
μ+ 2Γ(s).(1.24)

The constant μ is then the unique solution to∫ 1

0

ds√
μ+ 2Γ

= 1,(1.25)

and the critical value αcr of α and asymptotic height function H are given by

1

αcr
=

∫ 1

0

a(s)−3 ds, H(s) =

∫ s

0

a(t)−1 dt.(1.26)

Finally, the depth d∗ defined in (1.3) is given by

d∗ = d

∫ 1

0

ds√
2Γ(s)− 2Γmin

, Γmin = min
s∈[0,1]

Γ(s).(1.27)

The formulas (1.24)–(1.27) can be derived from our earlier definitions. In particu-
lar, while the existence of μ satisfying (1.25) places a restriction on γ, it does not
involve any additional restrictions on the relative shear flow U∗. We observe that the
regularity U∗ ∈ C2+β [0, d] assumed in Theorem 1.1 implies

γ ∈ C1+β [−1, 0], Γ, a ∈ C2+β [0, 1], H ∈ C3+β [0, 1].

2. Elevation, bounds, and decay. This section is devoted to the proofs of the
following five propositions. See (1.20) and (1.21) for the relationship between w, η,
F , and ζ.

Proposition 2.1 (elevation). Every nontrivial solitary wave with F ≥ 1, not
necessarily symmetric, is a wave of elevation. More precisely, if (ζ, w) is a nontrivial
solution of (1.19a)–(1.19g) with ζ ≥ 0, then w(x, 1) > 0 for all x ∈ R, and w > 0
in Ω.

Proposition 2.2 (symmetry and monotonicity). Every nontrivial supercritical
solitary wave is symmetric and monotone. More precisely, if (ζ, w) is a solution of
(1.19a)–(1.19g) with ζ > 0 and w �≡ 0, then, after a translation in x, w is even in x.
Moreover, wx < 0 for x > 0 and 0 < s ≤ 1.

Proposition 2.3 (upper bound on Froude number). If the maximum height
max η of a solitary wave, not necessarily supercritical, satisfies d < max η < d∗ ≤ ∞,
then the Froude number F is bounded above by a constant C depending only on U∗ and
max η. More precisely, let (ζ, w) be a nontrivial solution of (1.19a)–(1.19g) with no
sign condition on ζ. If d∗ <∞ and maxw(x, 1) ≤ d∗/d− 1, then αcr − ζ > C, where
the constant C > 0 is independent of (ζ, w). If d∗ = ∞ and maxw(x, 1) < M < ∞,
then αcr − ζ > C, where the constant C > 0 depends only on M .

Proposition 2.4 (bounds on first derivatives). Let (ζ, w) be a solitary wave with
ζ ≥ 0. Then there exist constants δ∗,M > 0 depending only on γ so that

inf
Ω
(Hs + ws) ≥ δ∗, |wx|0 ≤M(1 + |ws|0).
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Proposition 2.5 (equidecay at infinity). Let W be any collection of supercritical
solitary waves (ζ, w) for which

sup
(ζ,w)∈W

|w|2+β <∞.

Then W has the equidecay property

lim
x→±∞ sup

(ζ,w)∈W
sup

s∈[0,1]

|w(x, s)| = 0.

Propositions 2.1–2.3 are proved in the irrotational case by Craig and Sternberg
[11] but are new for waves with an arbitrary distribution of vorticity. Proposition 2.2
follows from Proposition 2.1 and a theorem from [21], and Proposition 2.4 is a conse-
quence of a lower bound on the pressure [46]. Proposition 2.5, on the other hand, is
new even in the irrotational case.

In section 2.1, we will introduce a family H(s; ν) of trivial flows, that is, x-
independent solutions of (1.14a) and (1.14c). We will then prove Propositions 2.1
and 2.3 in section 2.2 by applying maximum principle arguments to h −H(s; ν) for
various values of ν. In section 2.3, we will prove Proposition 2.4 using a maximum
principle argument [46] involving the pressure. Finally, in section 2.4 we will prove
Proposition 2.5 using Propositions 2.2–2.4 and a translation argument.

2.1. Trivial flows. In this section we are interested in solutions h of (1.14a) and
(1.14c) which are independent of x. These represent horizontal laminar flows with
constant depth and are solutions of(

− 1

2hs(s)2

)′
+ γ(−s) = 0, h(0) = 0.(2.1)

All solutions of (2.1) with hs(s) > 0 on [0, 1] are of the form

h(s) = H(s; ν) :=

∫ s

0

a(t; ν)−1 dt, where a(s; ν) :=
√
ν + 2Γ(s),

for some ν ≥ −2Γmin. The functions H(s; ν) and a(s; ν) generalize the functions H(s)
and a(s) from section 1.1: a(s;μ) = a(s) and H(s;μ) = H(s). The depth d∗ ∈ (d,∞]
is the maximum depth of these trivial flows,

d∗ = d · sup
ν
H(1; ν) = d ·H(1;−2Γmin).

The functions H(s; ν) play a similar role in our analysis to the linear comparison
functions in [11], which considered the irrotational case.

We will need the following lemma concerning the flows H(s; ν) when proving
Proposition 2.1.

Lemma 2.6. Define A : (−2Γmin,∞) → R by

A(ν) :=

⎧⎨⎩
1

2

ν − μ

1−H(1; ν)
ν �= μ,

αcr ν = μ.

Then A is C1 and strictly increasing. Moreover, if d∗ = ∞, then limν↓−2Γmin A(ν) =
0, and if d∗ <∞, then limν↓−2Γmin A(ν) > 0.
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Proof. Differentiating under the integral, we see that H(1; ν) is a strictly decreas-
ing and strictly convex function of ν ∈ (−2Γmin,∞). Relating A(ν) to a difference
quotient of H(1; ν), we deduce that A is strictly increasing for ν �= μ. Computing

d

dν
H(1; ν)

∣∣∣
ν=μ

= −1

2

∫ 1

0

a(s;μ)−3 ds = − 1

2αcr
,

we also find that limν→μA(ν) = αcr. Finally, if d∗ < +∞, then μ > −2Γmin and
d∗ > d imply

lim
ν↓−2Γmin

A(ν) = lim
ν↓−2Γmin

1

2

ν − μ

1−H(1; ν)
=

1

2

2Γmin + μ

d∗/d− 1
> 0,

while if d∗ = +∞, we obtain limν↓−2Γmin A(ν) = 0.
In the irrotational case we have μ = αcr = 1 and a(s; ν) =

√
ν, from which one

can easily compute A(ν) = (ν +
√
ν)/2. Explicit formulas are also available when the

vorticity is constant.

2.2. Bounds on the free surface profile. In order to prove Propositions 2.1
and 2.3, we will use the following consequence of the usual maximum principle.

Lemma 2.7. Let D = {(x, y) ∈ R2 : 0 < y < f(x)}, where f is a continuous
function with limits as x→ ±∞, and suppose that

Lu = aijDiju+ biDiu

is a uniformly elliptic operator with aij , bi ∈ C0
b(D). If u ∈ C2

b(D) satisfies u ≥ 0 on
∂D , Lu ≤ 0 in D , and

lim sup
|x|→∞

sup
0<y<f(x)

u(x, y) ≥ 0,

then u ≥ 0 in D .
Proof. See, for instance, Theorem 19 in [38].
Proof of Proposition 2.1. Suppose that (ζ, w) is a nontrivial solitary wave with

ζ ≥ 0. For convenience we work with the variables α = αcr − ζ and h = H(s;μ) +w,
which satisfy α ≤ αcr and h �≡ H(s;μ).

First we claim that h(x, 1) ≥ 1 for all x ∈ R. Assume the contrary. Then, since
h(x, 1) → 1 as x → ±∞, h(x, 1) must achieve its minimum value at point x = x0.
Since H(1; ν) is a decreasing function with H(1;μ) = 1 and H(1; ν) → 0 as ν → ∞,
there exists a unique ν > μ such that h(x0, 1) = H(1; ν) < 1. Define

ϕ(x, s) := h(x, s)−H(s; ν).

A direct computation shows that ϕ satisfies

(1 + h2x)ϕss − 2hshxϕxs + h2sϕxx + b1ϕx + b2ϕs = 0,(2.2)

where

b1 = −γHs(s; ν)
3ϕx, b2 = 3γHs(s; ν)

2 + 3γHs(s; ν)ϕs + γϕ2
s.

By assumption, hs > 0 in Ω. Since hs → Hs(s;μ) as x → ±∞, and Hs(s;μ) is
uniformly bounded away from 0, we deduce hs ≥ δ > 0 for some δ > 0. Thus (2.2) is
a uniformly elliptic equation for ϕ; indeed, its highest order coefficients satisfy

(1 + h2x)h
2
s − h2sh

2
x = h2s ≥ δ2.
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By construction, ϕ ≥ 0 on s = 1 and ϕ = 0 on s = 0. Since ν > μ, (1.14d) implies

lim
x→±∞ϕ(x, s) = H(s;μ)−H(s; ν) ≥ 0,

uniformly in s. Thus the maximum principle Lemma 2.7 implies ϕ ≥ 0 in Ω.
Since ϕ(x0, 1) = 0 and ϕ �≡ 0, the Hopf lemma implies

ϕs(x0, 1) = hs(x0, 1)−Hs(1; ν) < 0(2.3)

and hence that hs(x0, 1) < ν−1/2. On the other hand, since hx(x0, 1) = 0 and
h(x0, 1) = H(1; ν), the nonlinear boundary condition (1.14a) for h at (x0, 1) gives

1

2h2s(x0, 1)
+ α(H(1; ν) − 1) =

μ

2
.(2.4)

Combining (2.3) and (2.4) and rearranging we find

α >
1

2

ν − μ

1−H(1; ν)
= A(ν),

where we have used that H(1; ν)−1 < 0. Since ν > μ, Lemma 2.6 implies α > A(ν) ≥
αcr, contradicting our assumption α ≤ αcr. Thus h(x, 1) ≥ 1 for all x ∈ R.

Since h(x, 1) ≥ 1, w = h(x, s) −H(s;μ) satisfies w ≥ 0 on s = 1 and w = 0 on
s = 0. Applying the maximum principle as before, we conclude that w ≥ 0 in Ω.
Thus w > 0 in Ω by the strong maximum principle. Now we show that w(x, 1) > 0
for all x ∈ R. Assume for contradiction that w(x0, 1) = 0 for some x0 ∈ R. Since
w ≥ 0 in Ω and w �≡ 0, we can apply the Hopf lemma to obtain

ws(x0, 1) = hs(x0, 1)− μ−1/2 < 0.(2.5)

On the other hand the boundary condition at (x0, 1) gives 1/2h
2
s(x0, 1) = μ/2, con-

tradicting the strict inequality in (2.5).
We now explain the sense in which the less precise statement in Proposition 2.1

holds. Suppose (u, v, η, F ) is a nontrivial solitary wave corresponding to a solution
(ζ, w) of (1.19), and that F ≥ 1. From (1.20) we see that ζ ≥ 0. Since (u, v, η, F )
is nontrivial, w �≡ 0, so the above argument implies w(x, 1) > 0 for all x ∈ R,
which by the proof of Proposition 1.4 is equivalent to (u, v, η, F ) being a wave of
elevation.

To prove Proposition 2.2, we use the following theorem from [21].
Theorem 2.8. Let (ζ, w) solve (1.19a)–(1.19g) with ζ > 0. If w(x, 1) > 0

for all x ∈ R, then w(x, s) is symmetric in x. That is, there exists x0 such that
w(x, s) = w(2x0 − x, s) for all (x, s) ∈ Ω. Moreover, w(x, s) monotonically decreases
on either side of x = x0, wx(x, s) < 0 for x0 < x <∞ and 0 < s ≤ 1.

Proof of Proposition 2.2. Since (ζ, w) is a supercritical wave, by Proposition 2.1
it is also a wave of elevation. Thus by Theorem 2.8, w has the desired monotonicity
properties. By the proof of Proposition 1.4, this implies symmetry and monotonicity
in the (u, v, η) variables.

Proof of Proposition 2.3. For convenience we work with the variables α = αcr − ζ
and h = H + w. Suppose that (ζ, w) is a nontrivial solitary wave with

0 < maxw(x, 1) ≤M < d∗/d− 1.
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Then we can find

−2Γmin < νM ≤ ν < μ

so that maxh(x, 1) = H(1; ν) and M = H(1; νM ), where the functions H(s; ν) were
defined in section 2.1. Since h is an increasing function of s and h(x, 1) → 1 as
x → ±∞, we have maxΩ h = h(x0, 1) for some point (x0, 1) on the upper boundary.
We now apply the maximum principle as in the proof of Proposition 2.1. The function
ϕ(x, s) := h(x, s)−H(s; ν) satisfies the elliptic equation (2.2) to which the maximum
principle applies. By construction we have ϕ ≤ 0 on s = 1 and ϕ = 0 on s = 0.
Moreover, by (1.14d),

lim
x→±∞ϕ(x, s) = H(s;μ)−H(s; ν) < 0.

Thus the maximum principle Lemma 2.7 yields ϕ ≤ 0 in Ω. The Hopf lemma then im-
plies ϕs(x0, 1) > 0 and hence that hs(x0, 1) > ν−1/2. Plugging this into the boundary
condition for h, we find

α >
1

2

μ− ν

H(1; ν)− 1
= A(ν) ≥ A(νM ) =: C > 0,(2.6)

where A(ν) ≥ A(νM ) > 0 by Lemma 2.6. If d∗ < ∞, then by Lemma 2.6 we can let
M → d∗/d− 1 in (2.6) to obtain α ≥ inf(−2Γmin,+∞)A > 0.

We remark that in the irrotational case, the first inequality in (2.6) is equivalent
to equation 4.4 in [11].

2.3. Lower bound on the pressure. In order to prove Proposition 2.4, we
will work with the stream function formulation (1.9) of the water wave problem. In
particular, we will apply the maximum principle to the function

p = −|∇ψ|2
2

− α(y − 1) + Γ(−ψ) + μ

2
,

which differs from the physical pressure P by an additive constant and is defined in
the fluid domain

Dη = {(x, y) ∈ R2 : 0 < y < η(x)}.
Because of the boundary condition satisfied by ψ in (1.9a), p vanishes on y = η(x).

The following lemma from [46] is an improved version of a similar lemma in [9].

Lemma 2.9. Suppose that η ∈ C2+β
b (R) and ψ ∈ C2+β

b (Dη) satisfy (1.9),
supDη

ψy < 0, and ψxx → 0 as x → ±∞, uniformly in y. Then p (defined above)

satisfies

p ≥ − 1
2 |γ+|0(ψ + 1),(2.7)

where γ+ = max(γ, 0).
Proof. Using Δψ = −γ(ψ) we first compute

px = ψxψyy − ψyψxy, py = ψyψxx − ψxψxy − α.

Combining this with p = 0 on y = η(x), we have

p(x, y) = −
∫ η(x)

y

py dy
′ =
∫ η(x)

y

(ψxψxy − ψyψxx) dy
′ + α(η(x) − y).
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Thanks to the asymptotic conditions ψx, ψxx → 0 as x → ±∞, the integral term
vanishes as x→ ±∞, leaving us with

p− α(η(x) − y) → 0 as x→ ±∞,(2.8)

uniformly in y. Taking distributional derivatives, we also find

Δp = (Δψ)2 − ψ2
xx − ψ2

yy − 2ψ2
xy ∈ Cβ

b (Dη)

and hence by elliptic regularity that p ∈ C2+β
b (Dη).

A direct computation, depending only on the identity Δψ = −γ(ψ), shows that
ϕ = p+ α(y − 1) satisfies

Δϕ+
2ϕx + 2γψx

|∇ψ|2 ϕx +
2ϕy + 2γψy

|∇ψ|2 ϕy = 0.

Setting M = 1
2 |γ+|0, we infer that θ = p+M(ψ + 1) satisfies

Δθ + b1θx + b2θy =M(γ − 2M)− 2α

|∇ψ|2
(
(γ − 2M)ψy + α

)
≤ 0,

where

b1 = 2
(γ − 2M)ψx + θx

|∇ψ|2 , b2 = 2
(γ − 2M)ψy + θy + 2α

|∇ψ|2 ,

and where we’ve used the fact that ψy < 0. On the free surface y = η(x) we have
θ =M(ψ + 1) = 0. On the bottom y = 0 we have

θy = ψyψxx − ψxψxy − α+Mψy = −α+Mψy < 0,(2.9)

so θ cannot achieve a minimum there. Using (2.8), we also get

lim
x→±∞ inf

0<y<η(x)
θ = lim

x→±∞ inf
0<y<η(x)

(
α(η(x) − y) +M(ψ + 1)

) ≥ 0.

Thus the maximum principle Lemma 2.7 yields θ ≥ 0 in Dη, from which the proposi-
tion follows.

The inequality (2.9) is one of very few places in this paper where α > 0 is im-
portant. This inequality corresponds to the gravitational constant g being positive,
i.e., to gravity pointing downward.

Proof of Proposition 2.4. Let (ζ, w) be a solitary wave with ζ ≥ 0, and set
α = αcr − ζ for convenience. Since infΩ hs > 0, the associated stream function ψ will
have supψy < 0. Thanks to the asymptotic condition (1.19f) satisfied by w, we also
have ψxx → 0 as x → ±∞, uniformly in y. Thus we can apply Lemma 2.9. In (x, s)
variables, the inequality (2.7) becomes

p = − 1 + w2
x

2(Hs + ws)2
− α(H + w − 1) +

1

2H2
s

≥ −1

2
|γ+|0(1 − s),

where we’ve used the identity 1/H2
s = μ+2Γ(s). Rearranging and using the fact that

h = H + w ≥ 0 and α ≤ αcr, we have

1 + w2
x

2(Hs + ws)2
≤ 1

2
|γ+|0(1− s)− α(H + w − 1) +

1

2H2
s

≤ 1

2
|γ+|0 + αcr +

1

2H2
s

≤ C1,(2.10)
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where the constant C1 depends only on γ. Thus (2.10) implies the pointwise bounds

Hs + ws ≥ 1√
2C1

=: δ∗, |wx| ≤
√
2C1(Hs + ws) ≤ C2(1 + |ws|).

2.4. Flow force and equidecay. For any solution (α, h) of (1.14a)–(1.14c), the
quantity

S(α, h) =

∫ 1

0

(
1− h2x
2h2s

− α(h− 1) + Γ +
μ

2

)
hs ds(2.11)

is a constant independent of x. In physical variables, this is, up to rescaling,∫ η

0

(P + (u− c)2) dy,

which is called the flow force in [25]. S is also related to the spatial Hamiltonian in
[18]. For uniform flows h = H(s; ν), we compute

S(α,H( · ; ν)) = μ− ν

2
H(1; ν)− α

2

(
H(1; ν)− 1

)2
+
α

2
+

∫ 1

0

a(s; ν) ds.

For solutions h of (1.14), the asymptotic condition (1.14d) implies S(α, h) = S(α,H),
where as usual H(s) = H(s;μ).

We will use the flow force to distinguish H(s) from H(s; ν) with ν �= μ.
Lemma 2.10. Suppose h is independent of x and solves (1.14a)–(1.14c) with

hs > 0 on [0, 1]. Then S(α, h) > S(α,H).
Proof. Since h(s) solves (2.1) with hs > 0, we must have h(s) = H(s; ν) for some

ν ≥ −2Γmin and hence in particular S(α, h) = S(α,H( · ; ν)). Assuming that μ �= ν,
we can solve (1.14b) for α to get α = A(ν), and thus by Lemma 2.6 that ν < μ. We
now compute

∂

∂τ
S(α,H( · ; τ)) = Hτ (1; τ)(H(1; τ)− 1)(A(τ) − α).

For ν < τ < μ, we have H(1; τ) > 1 and Hτ (1; τ) < 0, and also by Lemma 2.6
that A(τ) > α. Thus ∂

∂τ S(α,H( · ; τ)) < 0 for ν < τ < μ, which implies S(α, h) >

S(α,H) = S(α,H( · ;μ)).
Using Lemma 2.10, we can now prove Proposition 2.5. The first step, which is

inspired by [39], rephrases equidecay in terms of sequences of translations of waves in
W .

Proof of Proposition 2.5. Assume that the proposition is false. Then there exists
(ζn, wn) ∈ W and (xn, sn) ∈ Ω with xn → ∞ and |wn(xn, sn)| ≥ ε for some fixed
ε > 0. Without loss of generality we can assume that sn → s0 ∈ [0, 1] and ζn → ζ ∈
[0, αcr]. For convenience, we work with the variables hn = H + wn and α = αcr − ζ.
Consider the translated sequence

ĥn(x, s) = hn(x+ xn, s).

Since |ŵn|2+β and hence |ĥn|2+β are uniformly bounded, we can extract a subsequence

so that ĥn → ĥ in C2
loc(Ω), where ĥ ∈ C2+β

b (Ω) has ĥ �≡ H . By Proposition 2.4,

∂shn ≥ δ∗ for each n, so ĥs ≥ δ∗. Moreover, since (αn, ĥn) solves (1.14a)–(1.14c),
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(α, ĥ) solves (1.14a)–(1.14c) as well. Finally, since ĥ is obtained as a limit of solitary

waves, S(α, ĥ) = S(α,H).

Proposition 2.2 implies that the waves in W are monotone, so ĥx ≤ 0. Since ĥ is
bounded, this forces

ĥ(x, s) → H±(s) as x→ ±∞,(2.12)

pointwise in s for some bounded functions H±, as well as

H+(s) ≤ ĥ(x, s) ≤ H−(s) in Ω.(2.13)

We claim that H± ∈ C2+β [0, 1] solves (1.14a)–(1.14c) with S(α,H±) = S(α,H) and
∂sH± ≥ δ∗. To see this, consider another translated sequence

h�n(x, s) = ĥ(x+ n, s), n = 1, 2, . . . .

We can extract a subsequence so that h�n converges in C2
loc(Ω) to a function h�

in C2+β
b (Ω) solving (1.14a)–(1.14c) with S(α, h�) = S(α,H) and h�s ≥ δ∗. Then

(2.12) implies h� = H+, and hence that H+ ∈ C2+β [0, 1] solves (1.14a)–(1.14c) with
S(α,H+) = S(α,H) and ∂sH+ ≥ δ∗. The argument for H− is similar. But by
Lemma 2.10, the only function H±(s) satisfying all of these requirements is H±(s) =
H(s). Thus (2.13) becomes

H(s) ≤ ĥ(x, s) ≤ H(s) in Ω,

which forces ĥ ≡ H and hence ŵ ≡ 0, a contradiction.

3. Properness and spectral properties. In this section, we will formulate
(1.19) as a nonlinear operator equation F (ζ, w) = 0 in weighted Hölder spaces. Our
main result is Theorem 3.10, which asserts that F is locally proper when restricted
to δ < ζ < αcr − δ for any δ > 0. We call a nonlinear mapping F : X → Y locally
proper if F−1(K) ∩D is compact whenever K ⊂ Y is compact and D ⊂ X is closed
and bounded. In bounded domains, local properness follows from Schauder estimates,
but this argument no longer works in unbounded domains. Many of the lemmas we
will need depend only on the domain, ellipticity, and the divergence structure of the
equation. While nonstandard, they are fairly straightforward to prove, and we defer
them to Appendix A.

In section 3.1, we will introduce the weighted Hölder spaces Ck+β
σ (Ω) and define

the nonlinear operator F . Here the weight function σ is essentially arbitrary; we
only assume symmetry, smoothness, and a subexponential growth condition (3.1). A
particular weight function σ will eventually be constructed in sections 5.6–5.7. For
ζ > 0, we will show in section 3.2 that the linearized operators Fw(ζ, 0) associated
with trivial solutions w ≡ 0 are invertible and that the general linearized operators
Fw(ζ, w) are Fredholm with index 0. Since, for linear operators, local properness is
equivalent to being semi-Fredholm with index < +∞, i.e. to having a closed range and
finite-dimensional kernel, this will also show that the linearized operators Fw(ζ, w)
are locally proper. In section 3.3, we will define and study the spectra of the linearized
operators Fw(ζ, w). Finally, in section 3.4 we will prove that F is locally proper.
While the linear arguments in section 3.2 and 3.3 are valid in both weighted and
unweighted spaces, this nonlinear argument uses the weight function in a crucial way.
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3.1. Formulation in weighted Hölder spaces. In section 3.4 we will need
control over the rate at which w,Dw,D2w decay as x → ±∞. For this purpose we
introduce the weighted Hölder spaces

Ck+β
σ (Ω) = {u ∈ Ck+β(Ω) : |σu|k+β <∞}.

Here the weight function σ ∈ C∞(R) is a strictly positive even function satisfying

lim
x→±∞σ = ∞, lim

x→±∞
Dk

xσ

σ
= 0 for k ≥ 1,(3.1)

but is otherwise arbitrary. We think of (3.1) as a subexponential growth condition
and note that it is satisfied, for instance, by σ(x) = (1 + x2)p/2 for any p > 0.

Let T = {s = 1} be the top and B = {s = 0} the bottom of the infinite strip
Ω = R× (0, 1). Introducing the notation

Ck+β
σ,e (Ω) = {u ∈ Ck+β

σ (Ω) : u is even in x},

and similarly for Ck+β
b,e (Ω), we will consider (1.19) as a system for

w ∈ X e
σ = {u ∈ C2+β

σ,e (Ω) : u = 0 on B}.(3.2)

Note that w ∈ X e
σ implies the linear conditions (1.19d), (1.19e), (1.19f), and (1.19h).

For supercritical solitary waves (ζ, w), the requirement w ∈ X e
σ is not a restric-

tion. This follows from the following result from [21].
Theorem 3.1. Let (ζ, w) solve (1.19) with ζ > 0. Then |cosh(kx)w|2+β < ∞,

where the constant k > 0 depends only on ζ.
Lemma 3.2. Let (ζ, w) solve (1.19) with ζ > 0. Then w ∈ X e

σ .
Proof. Pick k as in Theorem 3.1. From (3.1) we easily check σ and all of

its derivatives grow more slowly than any exponential Ceε|x| with ε > 0. Thus
|σ/ cosh(kx)|3 <∞, from which the lemma follows.

Next we need to encode (1.19g), infΩ(Hs + ws) > 0. Setting δ∗ as in Proposi-
tion 2.4, we know that all solutions (ζ, w) of (1.19) with ζ ≥ 0 in fact satisfy the
uniform condition infΩ(Hs + ws) ≥ δ∗. We therefore define

Uσ :=

{
w ∈ X e

σ : inf
Ω
(Hs + ws) >

δ∗
2

}
,(3.3)

which is an open subset of X e
σ . We now write the remaining nonlinear equations

(1.19a)–(1.19b) as F (ζ, w) = 0, where

F = (F1,F2) : (0, αcr)× Uσ −→ Y e
σ

is given by

F1(w) =

(
wx

Hs + ws

)
x

+

(
− 1 + w2

x

2(Hs + ws)2
+ Γ

)
s

,

F2(ζ, w) =

(
1 + w2

x

2(Hs + ws)2
+ (αcr − ζ)w − μ

2

) ∣∣∣∣
T

,

(3.4)

and Y e
σ is the natural target space of F ,

Y e
σ = Cβ

σ,e(Ω)× C1+β
σ,e (T ).(3.5)
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By Lemma 3.2, the original system (1.19) for (ζ, w) is equivalent to ζ ∈ (0, αcr),
w ∈ Uσ, and F (ζ, w) = 0.

As in Appendix A, it will be useful to work in a variety of spaces related to
X e

σ ,Y
e
σ but without decay and without evenness in x. We define

Xb = {u ∈ C2+β
b (Ω) : u = 0 on B}, Yb = Cβ

b (Ω)× C1+β
b (T ),

and let X e
b , Y e

b be the corresponding subspaces of functions even in x.

3.2. Local properness of linearized operators. Following Appendices A.3
and A.5, our first step in proving local properness for F will be to analyze the linear
operators

L = (A ,B) = Fw(ζ, w)

obtained by taking the Fréchet derivative of F with respect to w. Fix (ζ, w), and
for convenience set h = H + w. Letting D1 = Dx and D2 = Ds, these operators are
given in compact divergence form by

A ϕ = Di(b
ijDjϕ), Bϕ = −b2jDjϕ+ (αcr − ζ)ϕ

with the usual summation convention, and where the coefficients bij are

(
b11 b12

b21 b22

)
=

⎛⎜⎜⎜⎝
1

Hs + ws
− wx

(Hs + ws)2

− wx

(Hs + ws)2
1 + w2

x

(Hs + ws)3

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1

hs
−hx
h2s

−hx
h2s

1 + h2x
h3s

⎞⎟⎟⎟⎠ .

We observe that bij ∈ C1+β
b (Ω), provided that w ∈ C2+β

b (Ω) and infΩ(Hs + ws) > 0.
Moreover, A is uniformly elliptic and B is uniformly oblique. Indeed,

b22 =
1 + h2x
h3s

≥ |hs|−3
0 , det(bij) =

1 + h2x
h3s

1

hs
−
(
hx
h2s

)2
=

1

h4s
≥ |hs|−4

0 .

If instead of linearizing F2(ζ, w) we had linearized

F̃2(ζ, w) := (Hs + ws)
2F2(ζ, w) = (Hs + ws)

2
(
αw − μ

2

)
+

1 + w2
x

2
,

our linearized boundary operator would have been

B̃ϕ = (2αw − μ)(Hs + ws)ϕs + wxϕx + α(Hs + ws)
2ϕ.

For B̃ to be uniformly oblique, the condition infΩ(Hs +ws) > 0 required for uniform
ellipticity must be supplemented by supT (2αw−μ) < 0. Being able to drop this extra
obliqueness condition supT (2αw−μ) < 0 is an advantage of the divergence formulation
introduced in [10]. (In [10], however, this extra condition was unnecessarily imposed.)

While we are primarily interested in L = (A ,B) as a map X e
σ → Y e

σ , we will
also think of it as a map Xb → Yb and X e

b → Y e
b . First we give sufficient conditions

for L to be invertible.
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Lemma 3.3. Fix ζ ∈ R and w ∈ X e
b with infΩ(Hs + ws) > 0. Suppose that

(αcr − ζ) sup
x

∫ 1

0

(Hs + ws)
3 ds < 1.(3.6)

Then the linear operator L = Fw(ζ, w) is invertible X e
σ → Y e

σ , Xb → Yb, and
X e

b → Y e
b .

Proof. We observe that Lϕ = (f, g) has the same divergence form structure
as (A.7). Since (Hs + ws)

3 = b11/ det(bij), condition (3.6) is precisely (A.8), so
L : Xb → Yb is invertible by Lemma A.5. Here we are using the evenness of w in
x and Lemma A.13 in order to apply Lemma A.5 in spaces of even functions. We
then obtain invertibility X e

b → Y e
b by Lemma A.13, and invertibility X e

σ → Y e
σ by

Lemma A.11.
Corollary 3.4. For ζ > 0, the linear operator L = Fw(ζ, 0) is invertible

X e
σ → Y e

σ , Xb → Yb, and X e
b → Y e

b .
Proof. With w = 0, (3.6) becomes

(αcr − ζ)

∫ 1

0

H3
s ds =

αcr − ζ

αcr
< 1,

which holds if and only if ζ > 0, so the statement follows immediately from Lem-
ma 3.3.

Corollary 3.5. For ζ > 0 and w ∈ X e
σ with infΩ(Hs + ws) > 0, the linear

operator L = Fw(ζ, w) is Fredholm with index 0 as a map X e
σ → Y e

σ , Xb → Yb,
and X e

b → Y e
b .

Proof. Since w ∈ X e
σ , the limiting operator (see Appendix A.3) for L = Fw(ζ, w)

is L0 = Fw(ζ, 0). Since L0 is invertible Xb → Yb by Corollary 3.4, Lemma A.7
implies that L is locally proper Xb → Yb, and hence semi-Fredholm with index
ν < +∞. For t ∈ [0, 1], set

Lt = Fw(ζ, tw) : Xb → Yb.

Then Lt depends continuously on t in the operator norm, and, by the above argument,
is semi-Fredholm for each t. By the continuity of the index, the index of Lt is
independent of t and hence equal to 0 since L0 is invertible. In particular, L = L1

is Fredholm with index 0 as a map Xb → Yb. L is then Fredholm with index 0 as a
map X e

b → Y e
b by Lemma A.13, and Fredholm with index 0 as a map X e

σ → Y e
σ by

Lemma A.10.
Lemma 3.6. Fix ζ > 0 and w ∈ X e

σ satisfying infΩ(Hs + ws) > 0, and set
(A ,B) = Fw(ζ, w). There exists κ0 < 0 so that for all κ ∈ C \ (−∞, κ0] the linear
operator (A − κI,B) is Fredholm with index 0 as a map X e

σ → Y e
σ , Xb → Yb, and

X e
b → Y e

b where we temporarily allow functions in these spaces (but not w itself) to
be complex-valued.

Proof. We argue exactly as in the proofs of Lemma 3.3 and Corollaries 3.4 and
3.5, with Lemma A.6 playing the role of Lemma A.5.

3.3. Spectral properties. In this section we define and analyze the spectrum
of L = Fw(ζ, w). For brevity, we only consider L as a map X e

σ → Y e
σ , though it is

clear from the proofs that analogous results hold with X e
σ replaced by Xb or X e

b .
Lemma 3.7. Let δ > 0 and K ⊂ R× X e

b be a closed and bounded set with

inf
K
ζ > δ, inf

K
inf
Ω
(Hs + ws) > δ.
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Fixing θ ∈ (π/2, π), there exist constants c1, c2 > 0 such that for all (ζ, w) ∈ K and
κ ∈ C with |arg κ| ≤ θ and |κ| > c2,

c1
(|σϕ|2+β + |κ|β/2|σϕ|2 + |κ|1/2|σϕ|1+β + |κ|(β+1)/2|σϕ|1

)
≤ |σ(A − κI)ϕ|β + |κ|β/2|σ(A − κI)ϕ|0

+ |σBϕ|1+β + |κ|β/2|σBϕ|1 + |κ|1/2|σBϕ|β + |κ|(β+1)/2|σBϕ|0,
where (A ,B) = Fw(ζ, w).

Proof. Thanks to our weighted Schauder estimate (A.14) we can proceed as in
[9]. Introducing a new variable t ∈ R, we consider the operator(

A +
κ

|κ|∂
2
t ,B

)
: C2+β

σ (Ω× R) → Cβ
σ (Ω× R)× C1+β

σ (T × R),

which, by our choice of κ, is uniformly elliptic and uniformly oblique. Thought of as
a function of x and t, σ satisfies condition (A.12) from Appendix A.4. Thus we can
apply Lemma A.9 to get a weighted Schauder estimate

c|σϕ̃|2+β ≤ ∣∣σ(A + κ
|κ|∂

2
t )ϕ̃
∣∣
β
+ |σBϕ̃|1+β(3.7)

for ϕ̃ ∈ C2+β
σ (Ω×R) vanishing on s = 0 with c independent of (ζ, w) ∈ K and κ with

|arg κ| ≤ θ and |κ| > c3. For ϕ ∈ X e
σ , we set ϕ̃(x, s, t) = ei|κ|

1/2tϕ(x, t). Applying
(3.7), we obtain

c
∣∣σei|κ|1/2tϕ∣∣

2+β;Ω×R
≤ ∣∣σei|κ|1/2t(A − κI)ϕ

∣∣
β;Ω×R

+
∣∣σei|κ|1/2tBϕ

∣∣
1+β;T×R

.

Expanding the definitions of the various norms and using (3.1) yields the desired
result for |κ| sufficiently large.

Using Lemma 3.7, we can analyze the spectrum of the linear operator Fw(ζ, w),
which we define as in [19].

Definition 3.8. Let L = (A,B) : X → Y1 × Y2 be a bounded operator between
Banach spaces with X ⊂ Y1. We denote by Σ(A,B) the spectrum of A, considered as
an unbounded operator Ã : Y1 → Y1 with domain D(Ã) = X ∩ kerB.

Lemma 3.9. Fix ζ > 0 and w ∈ X e
b satisfying infΩ(Hs + ws) > 0, and set

(A ,B) = Fw(ζ, w) : X e
σ → Y e

σ . Then there exists an open neighborhood N of the
ray {κ ∈ C : κ ≥ 0} in C such that Σ(A ,B)∩N consists of finitely many eigenvalues,
each with finite algebraic multiplicity.

Proof. Defining Ã as in Definition 3.8, our weighted Schauder estimate (A.14)
shows that Ã is a closed operator. Pick κ0 as in Lemma 3.6. Then Ã − κI is
Fredholm of index 0 whenever Reκ > κ0. Letting N = {κ : Reκ > κ0} we therefore
have by Chapter IV, section 6 of [23] that Σ(A ,B)∩N consists of isolated eigenvalues
with finite algebraic multiplicities. By Lemma 3.7, Ã − κI is one-to-one and hence
invertible for κ with |argκ| ≤ 3π/4 and |κ| sufficiently large, and so Σ(A ,B) ∩ N
is a relatively compact subset of N . In particular, since points in Σ(A ,B) ∩ N are
isolated, Σ(A ,B) ∩ N consists of only finitely many eigenvalues.

3.4. Local properness of the nonlinear operator. Finally, we show local
properness of the nonlinear operator F using the results from section 3.2 together
with Appendix A.4. Recall the open set Uσ ⊂ X e

σ from section 3.1,

Uσ =

{
w ∈ X e

σ : inf
Ω
(Hs + ws) >

δ∗
2

}
,
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where δ∗ > 0 is fixed and given by Proposition 2.4. We note that Uσ and its closure
are convex. Picking a small parameter δ > 0, we will deal with solitary waves

(ζ, w) ∈ (δ, αcr − δ)× Uσ,

so that the usual inequalities 0 < ζ < αcr hold uniformly.
Theorem 3.10. Fix δ > 0. Then F : [δ, αcr − δ] × Uσ → Y e

σ is locally proper.
Moreover, w �→ F (ζ, w) is locally proper Uσ → Y e

σ for any ζ > 0.
Proof. We simply apply Lemma A.12 and its parameter dependent version. By

Lemma A.13, we can ignore the fact that we’re dealing with spaces of even functions
when applying Lemma A.12.

Fix ζ > 0. We easily check that Uσ satisfies the hypotheses on D in Lemma A.12
and that w �→ F (ζ, w) has the necessary regularity. By Corollary 3.5, the linear
operators Fw(ζ, w) for w ∈ Uσ are Fredholm and hence locally proper. Thus by
Lemma A.12, w �→ F (ζ, w) is locally proper Uσ → Y e

σ . Similarly, by the parameter-
dependent version of Lemma A.12, F : [δ, αcr − δ] → Y e

σ is locally proper.

4. Small-amplitude solutions. We now turn our attention to small-amplitude
solitary waves. In the notation of section 3.1, these are solutions (ζ, w) of F (ζ, w) = 0
with |w|2 small. Such waves were constructed in [20] and later in [18]. The object
of this section is the following theorem, which asserts the existence and uniqueness
of a one-parameter family of small-amplitude solutions (ζ, wζ), 0 < ζ < ζ∗, together
with the continuous dependence of wζ on ζ and the invertibility of the associated
linearized operators Fw(ζ, w

ζ ). We recall that F ,X e
σ ,Y

e
σ were defined in section 3.1

in terms of a fixed weight function σ satisfying the subexponential growth condition
(3.1). Because the natural rates of decay in this section are exponential, this sub-
exponential weight function σ will not play an important role in the analysis.

Theorem 4.1. For ζ∗ > 0 sufficiently small, there is a one-parameter family
(ζ, wζ), 0 < ζ < ζ∗ of nontrivial solutions to F (ζ, w) = 0 with the following proper-
ties:

(i) (Continuity) The map ζ �→ wζ is continuous from the interval (0, ζ∗) to X e
σ ,

and |wζ |2+β → 0 as ζ → 0.
(ii) (Invertibility) The linearized operator Fw(ζ, w

ζ ) is invertible X e
b → Y e

b

and X e
σ → Y e

σ for each 0 < ζ < ζ∗.
(iii) (Uniqueness) Suppose that (ζ, w) is a nontrivial solution of F (ζ, w) with

ζ > 0. If ζ and |w|2 are sufficiently small, then w = wζ .
None of the properties (i)–(iii) in Theorem 4.1 are addressed directly in [20] or

[18]. Compared with [20], the construction in [18] gives a more detailed description of
the small-amplitude solutions, and we will rely heavily on the methods and results of
this paper to prove Theorem 4.1. The continuity (i) is relatively straightforward, and
we will prove the uniqueness (iii) using the elevation result from section 2. Our main
difficulty will be showing the invertibility (ii). Plugging the asymptotic descriptions
of wζ from [18, 20] into (3.6), it seems that we cannot apply Lemma 3.3, even in the
irrotational case. By Corollary 3.5, the linearized operators Fw(ζ, w

ζ) are Fredholm
of index 0, so they are invertible if and only if they have trivial kernel. We note that
the restriction to spaces of functions even in x here is essential. This is because, for
sufficiently smooth solutions of F (ζ, w) = 0, differentiation with respect to x yields
Fw(ζ, w)wx = 0.

In section 4.1, we will perform several changes of (dependent) variable which ulti-
mately transform F (ζ, w) into an evolution equation ux = Lu+N ζ(u) with x playing
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the role of time. We will also perform the associated changes of variable in the lin-
earized problems. In section 4.2, we will consider linear equations vx = Lv +M(x)v
with M small. We will show an exponential-dichotomy type result which will allow us
to identify solutions with at most mild exponential growth as x→ ±∞. In section 4.3,
we will exhibit the construction of a two-dimensional center manifold controlled by a
two-dimensional reduced equation. Homoclinic orbits of this reduced equation corre-
spond to small-amplitude solitary waves. Sections 4.1–4.3 contain results, in particular
on linearized problems, which are not present in [18]. We will prove Theorem 4.1 in
section 4.4. Using the results on linearized problems from sections 4.1–4.3, we will re-
duce invertibility (ii) to an elementary fact about the linearizations of two-dimensional
equations about homoclinic orbits. To show uniqueness (iii), we will prove that only
one homoclinic orbit of the two-dimensional reduced equation can correspond to a
wave of elevation and then apply our elevation result, Proposition 2.1.

4.1. Change of variables. In this section we will outline the changes of (de-
pendent) variable in [18] that transform the nonlinear operator equation F (ζ, w) = 0
into an evolution equation. In addition, we will describe how these changes of variable
affect the linearized problems Fw(ζ, w)ϕ = 0. The explicit changes of variable will
be given in the subsections 4.1.1 and 4.1.2.

It is convenient to first change variables in the problem Fw(0, 0)ϕ = 0 obtained
by linearizing about the critical trivial solution (ζ, w) = (0, 0),

(a3ϕs)s + (aϕx)x = 0 in Ω, −a3ϕs + αcrϕ = 0 on T, ϕ = 0 on B,(4.1)

where a(s) = 1/Hs was defined in (1.24). In this section, we will work with the Hilbert
spaces

X = {(w, θ) ∈ H1(0, 1)× L2(0, 1) : w(0) = 0},
Y = {(w, θ) ∈ H2(0, 1)×H1(0, 1) : w(0) = 0},

which we think of as spaces of functions of the vertical variable s ∈ [0, 1]. Setting
ϑ = aϕx and thinking of (ϕ, ϑ) as a mapping R → Y , (4.1) becomes the linear
evolution equation

(ϕ, ϑ)x = L(ϕ, ϑ),(4.2)

where

L : D(L) ⊂ X → X, L

(
ϕ

ϑ

)
=

(
a−1ϑ

−(a3ϕs)s

)
,(4.3)

is a closed operator whose domain

D(L) = {(ϕ, ϑ) ∈ Y : ϑ(0) = 0, −a3ϕs(1) + αcrϕ(1) = 0
}

(4.4)

captures the boundary condition on s = 1. We give D(L) the graph norm, which is
equivalent to the Y norm. Evenness of ϕ in x is now expressed as

(ϕ, ϑ)(−x) = S(ϕ, ϑ)(x) := (ϕ,−ϑ)(x),(4.5)

where S(ϕ, ϑ) = (ϕ,−ϑ) is called the reverser. Solutions (ϕ, ϑ) of (4.2) with this
symmetry are called reversible.
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We now turn to the full nonlinear problem F (ζ, w) = 0, which we will transform
into a nonlinear perturbation of (4.2), written

ux − Lu = N ζ(u),(4.6)

for u : R → X , provided ‖u‖Y and |ζ| are sufficiently small. We note that the u
appearing in (4.6) is not the horizontal component u of the velocity field discussed in
section 1. The Hamiltonian structure of (4.6) plays an important role in [18] but is
not needed in our analysis.

To state the main results of this transformation, we introduce the notation

Ck
b (R, E) = {u ∈ Ck(R, E) : ‖u‖Ck(R,E) <∞},

Ck
0 (R, E) = {u ∈ Ck(R, E) : D�

xu(x) → 0 as x→ ±∞ ∀� ≤ k},
Ck

σ(R, E) = {u ∈ Ck(R, E) : ‖σu‖Ck(R,E) <∞}
for open subsets E of Banach spaces. Thanks to the subexponential growth condition
(3.1) on σ, there exist constants C1, C2 > 0 depending only on σ so that

C1

k∑
�=1

‖σD�
xu‖C0(R,E) ≤ ‖σu‖Ck(R,E) ≤ C2

k∑
�=1

‖σD�
xu‖C0(R,E)

for all u ∈ Ck
σ(R, E).

Our first lemma asserts that solutions (ζ, w) of F (ζ, w) = 0 with |ζ| and |w|2
sufficiently small yield solutions u of ux − Lu = N ζ(u).

Lemma 4.2. There exist neighborhoods Λ ⊂ R, V ⊂ Y , and U ⊂ D(L) of the
origin and smooth maps

Gζ : V → Y, N ζ : U → X,

defined for ζ ∈ Λ with the following properties:
(i) N ζ is nonlinear in that N ζ(0) = 0 and DN0(0) = 0.
(ii) Gζ is a near identity transformation in that Gζ(0) = 0 and DG0(0) = I.
(iii) N ζ and Gζ respect reversibility in that N ζ◦S = −S◦N ζ and Gζ ◦S = S◦Gζ .
(iv) Let (ζ, w) be a solution of F (ζ, w) = 0 with |ζ| and |w|2 sufficiently small,

and set

u = Gζ

(
w,

wx

Hs + ws

)
.(4.7)

Then u ∈ C1
σ(R, X) ∩C0

σ(R, U) solves ux − Lu = N ζ(u) and u(−x) = Su(x).
The second lemma asserts that reversible solutions u of ux − Lu = N ζ(u) with

sufficient regularity and which decay as x → ±∞ correspond to solutions w of
F (ζ, w) = 0.

Lemma 4.3. Suppose that u ∈ C3
σ(R, X) ∩ C2

σ(R, U) solves ux − Lu = N ζ(u)
and u(−x) = Su(x). Then u is given by (4.7), where w ∈ X e

σ solves F (ζ, w) = 0.
The correspondence u �→ w is continuous C3

σ(R, X) ∩ C2
σ(R, V ) → C2+β

σ (Ω) and

C3
b(R, X) ∩C2

b(R, V ) → C2+β
b (Ω), depending continuously on ζ in both cases.

The last lemma relates the corresponding linearized problems.
Lemma 4.4. In the setting of Lemma 4.3, suppose that ϕ ∈ X e

b is a nontrivial so-
lution of the linearized problem Fw(ζ, w)ϕ = 0. Then there is a corresponding nontriv-
ial solution v in C1

b(R, X)∩C0
b(R,D(L)) of the linearized problem vx − Lv = DN ζ(u)v

with v(−x) = Sv(x).
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The rest of section 4.1 is devoted to proving Lemmas 4.2–4.4. In section 4.1.1,
we will perform a simple change of variables w �→ (w, θ) which allows us to interpret
F (ζ, w) = 0 as an evolution equation with a nonlinear constraint. In section 4.1.2,
we will perform a more complicated change of variables u = Gζ(w, θ), which trans-
forms the previous evolution equation into one with only linear constraints, and prove
Lemmas 4.2–4.4. Our arguments are relatively straightforward and follow [18] very
closely, but there are several technical details which need to be checked. The reader
uninterested these technicalities is encouraged to skip sections 4.1.1–4.1.2 and move
on to section 4.2.

4.1.1. First change of variables. In this section we will perform the simple
change of variables

w �→ (w, θ), θ =
wx

Hs + ws
.

Recall the basic equations (1.19a)–(1.19b):⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

wx

Hs + ws

)
x

+

(
− 1 + w2

x

2(Hs + ws)2
+ Γ

)
s

= 0 on Ω,

1 + w2
x

2(Hs + ws)2
+ (αcr − ζ)w − μ

2
= 0 on T,

(4.8)

which we regard in this section as a system for ζ ∈ R and w ∈ X e
b satisfying

infΩ(Hs + ws) > 0. In terms of (w, θ), this can be rewritten as⎧⎪⎨⎪⎩
wx = (Hs + ws)θ in Ω,

θx = 1
2

(
θ2 + (Hs + ws)

−2
)
s
− γ in Ω,

1
2

(
θ2 + (Hs + ws)

−2
)
+ (αcr − ζ)w − μ

2 = 0 on s = 1

(4.9)

with θ ∈ C1+β
b (Ω) vanishing on B and odd in x.

The advantage of (4.9) is that it can be interpreted as an autonomous evolution
equation with x playing the role of time. To make this explicit, let V ⊂ Y be a
bounded neighborhood of the origin in Y , small enough that Hs +ws > δ∗ whenever
(w, θ) ∈ V , where δ∗ > 0 is given in Proposition 2.4. We then think of (4.9) as the
autonomous evolution equation

(w, θ)x = K1(w, θ), K ζ
2 (w, θ) = 0, K3(w, θ) = 0,(4.10)

where K1 : V → X describes the first two lines of (4.9),

K1

(
w

θ

)
=

(
(Hs + ws)θ

1
2 (θ

2 + (Hs + ws)
−2

)s − γ

)
,

K ζ
2 : V → R describes the nonlinear boundary condition on s = 1,

K ζ
2

(
w

θ

)
=

(
1

2
(θ2 + (Hs + ws)

−2) + (αcr − ζ)w − μ

2

) ∣∣∣∣
s=1

,

and K3 : V → R, K3(w, θ) = θ(0) encodes the remaining boundary condition not

dealt with by the definitions of X and Y . We easily check that the maps K1,K
ζ
2 ,K3
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are smooth. The evenness of w in x is now expressed as the reversibility (w, θ)(−x) =
S(w, θ)(x), where S is the reverser from (4.5).

Lemma 4.5. Suppose that F (ζ, w) = 0 and that |w|2 is sufficiently small, and
set θ = wx/(Hs +ws). Then (w, θ) ∈ C1

0 (R, X) ∩C0
0 (R, V ) is a reversible solution of

(4.10) with ‖(w, θ)(x)‖Y ≤ C|w|2.
Proof. The regularity (w, θ) ∈ C1(R, X)∩C0(R, Y ) and reversibility are straight-

forward. By Proposition 2.4, we know that infΩ(Hs + ws) ≥ δ∗ > 0, where δ∗ is
independent of (ζ, w). From this it is easy to show

sup
x
‖(w, θ)(x)‖Y ≤ C|w|2(1 + |w|2).

Thus, if |w|2 is sufficiently small, (w, θ)(x) will lie in V for all x. In particular, (w, θ)
solves (4.10). Since w,Dw,D2w → 0 uniformly in s as x → ±∞, we check that
‖(w, θ)‖Y → 0 as x → ±∞. Since (w, θ)x = K1(w, θ) and K1(0, 0) = 0, we conclude
that ‖(w, θ)x‖X → 0 as x→ ±∞ as well.

The following technical lemma asserts that solutions (w, θ) ∈ C3
σ(R, X)∩C2

σ(R, Y )
of (4.10) give classical solutions w ∈ C2+β(Ω) of (4.8).

Lemma 4.6. Suppose that (w, θ) ∈ C3
σ(R, X) ∩ C2

σ(R, V ) is a reversible so-
lution of (4.10). Then w ∈ X e

σ solves F (ζ, w) = 0. Moreover this correspon-
dence (w, θ) �→ w is continuous both from C3

σ(R, X)∩C2
σ(R, V ) to C2+β

σ (Ω) and from

C3
b(R, X) ∩C2

b(R, V ) to C2+β
b (Ω).

Proof. Since β ∈ (0, 1/2], the Sobolev embeddings H2(0, 1) → C1+β(0, 1) and
H1(0, 1) → Cβ(0, 1) immediately imply

|(σw)x|1+β;Ω + |σw|1+β;Ω ≤ C(‖σ(w, θ)‖C3(R,X) + ‖σ(w, θ)‖C2(R,V ))

for any (w, θ). This is the only place where the assumption β ∈ (0, 1/2] in Theorem 1.1
is used. It remains to estimate |σwss|β , and this is where we use the equation, (4.9),
satisfied by (w, θ). Setting h = H + w for convenience, we use (4.9) to eliminate θ,
finding

wss =
−h2swxx + 2hswxwxs + γH3

sw
2
x − 3γH2

sws − 3γHsw
2
s − γw3

s

1 + w2
x

.(4.11)

Multiplying (4.11) by σ, we obtain an estimate of the form

|σwss|β ≤ C(1 + |σw|1+β + |σwx|1+β)
3,

where we’ve used the multiplicative inequality |f |k+β ≤ |σ−1|k+β |σf |k+β . Since (w, θ)
is reversible, w is even in x, so we have w ∈ X e

σ . Eliminating θ from (4.9) we then
obtain F (ζ, w) = 0 as desired.

To show continuity in weighted spaces, suppose that (wi, θi) solve (4.10) with
ζ = ζi for i = 1, 2. Setting ϕ = w1 − w2, we can estimate |σϕ|1+β and |σϕx|1+β

as before, so it remains to estimate |σϕss|β . Using the equation to solve for wi
ss as

before, we subtract the two expressions and obtain

|σϕss|β ≤ C(1 + |w1|2+β + |w2|2+β)
4(|σϕ|1+β + |σϕx|1+β).

Setting σ = 1, the same argument gives continuity in unweighted spaces.
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For later reference we also linearize (4.8) with respect to w. Setting h = H + w,
this yields the system⎧⎪⎪⎨⎪⎪⎩

∂s

(1 + w2
x

h3s
ϕs − wx

h2s
ϕx

)
+ ∂x

(
− wx

h2s
ϕs +

1

hs
ϕx

)
= 0 in Ω,

1 + w2
x

h3s
ϕs +

wx

hs
ϕx + (αcr − ζ)ϕ = 0 on s = 1

(4.12)

for ϕ ∈ X e
b . Suppose that ϕ solves (4.12), and set

ϑ =
ϕx

hs
− θ

ϕs

hs
.

Then (ϕ, ϑ) solves the system obtained by linearizing (4.9) about (w, θ),⎧⎪⎨⎪⎩
ϕx = hsϑ+ θϕs in Ω,

zx =
(
wz − h−3

s ϕs

)
s

in Ω,(
wz − h−3

s ϕs

)
+ (αcr − ζ)ϕ = 0 on s = 1

(4.13)

with ϑ ∈ C1+β
b (Ω) vanishing on B and odd in x. If (w, θ) ∈ V for all x, we easily

check that the linearized problem (4.13) can be written

(ϕ, ϑ)x = DK1(w, θ)(ϕ, ϑ), DK ζ
2 (w, θ)(ϕ, ϑ) = 0, DK3(w, θ)(ϕ, ϑ) = 0,

(4.14)

where the Fréchet derivatives of K1,K
ζ
2 ,K3 are taken in Y .

4.1.2. Second change of variables. With (w, θ) as in the previous section, we
now make another change of variable u = Gζ(w, θ). Given (w, θ) ∈ Y , define

Ξ = w + a−3(1)s

∫ 1

s

[
1

2

(
θ2 +

1

(a−1 + ws)2

)
+ a3ws − a2

2

]
ds′,

ξ = Ξ− ζa−3(1)s

∫ 1

s

Ξ ds′.

The following lemma shows that

Gζ : V → Y, Gζ(w, θ) = (ξ, θ) = u

is a valid change of variables for |ζ| and V ⊂ Y sufficiently small. Its proof relies on
the easily verifiable properties

Gζ(0, 0) = 0, DG0(0, 0) = id: Y → Y.(4.15)

Lemma 4.7. For a sufficiently small neighborhood Λ× V of the origin in R× Y ,
the following holds:

(i) For each ζ ∈ Λ, Gζ : V → Y is a diffeomorphism onto its image. The
mappings Gζ and (Gζ)−1 depend smoothly on ζ ∈ Λ.

(ii) For each (ζ, w, θ) ∈ Λ × V , the derivative DGζ(w, θ) : Y → Y extends to

an isomorphism D̂Gζ(w, θ) : X → X. The operators D̂Gζ(w, θ) and D̂Gζ(w, θ)−1

depend smoothly on (ζ, w, θ) in Λ× V .
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Proof. This is Lemma 3.2 in [18], so we only give a sketch. Since Gζ is smooth,
the first part of the lemma follows from DG0(0) = I and Gζ(0) = 0 by the implicit

function theorem. The extension D̂Gζ(w, θ) : X → X is straightforward, as is the

smoothness of D̂Gζ in (ζ, w, θ). The properties of D̂Gζ(w, θ)−1 then follow from

applying the implicit function theorem to the equations D̂GζT = I and T D̂Gζ = I
for T ∈ L (X,X), the space of bounded linear operators X → X .

A consequence of Lemma 4.7 and (4.15) is the following technical lemma.

Lemma 4.8. For any integer k ≥ 0, the map (Gζ
∗(w, θ))(x) = Gζ(w(x), θ(x)) is

a homeomorphism both

Ck+1
b (R, X) ∩Ck

b (R, V ) → Ck+1
b (R, X) ∩ Ck

b (R, G
ζ(V ))

and Ck+1
σ (R, X) ∩Ck

σ(R, V ) → Ck+1
σ (R, X) ∩ Ck

σ(R, G
ζ(V )),

in each case also depending continuously on ζ ∈ Λ.
Proof. Fix k ≥ 0, and let v = (w, θ) ∈ Ck+1(R, X) ∩ Ck(R, V ). The statement

follows from writing

D�
xG

ζ(v) = DGζ(v)D�
xv +Rζ

� (v,Dxv, . . . , D
�−1
x v), 0 ≤ � ≤ k,

Dk+1
x Gζ(v) = D̂Gζ(v)Dk+1

x v +Rζ
k+1(v,Dxv, . . . , D

k
xv),

and observing that the remainder terms Rζ
� are smooth Λ×V ×Y �−1 → Y and satisfy

Rζ
� (0, . . . , 0) = 0 and DRζ

� (0, . . . , 0) = 0.
We now plug (w, θ) = (Gζ)−1(u) into (4.10) and obtain a system for u. A direct

computation shows

K ζ
2 (w, θ) = −a3ξs(1) + αcrξ(1), L = DK1(0, 0)|D(L).(4.16)

In particular, in the u = (ξ, θ) variables, the boundary condition K ζ
2 (w, θ) = 0 is

both linear and independent of ζ. Defining

N ζ(u) := DK1(0, 0)u−DGζ(w, θ)K1(w, θ),(4.17)

(4.16) implies that (4.10) is equivalent to ux − Lu = N ζ(u), where K ζ
2 (w, θ) = 0

and K3(w, θ) = 0 are captured by requiring u ∈ D(L). From (4.17) we see that
N ζ is smooth jointly in u and ζ, defined on a neighborhood of the origin in Y with
values in X . Similar computations show that the linearized problem (4.14) for (ϕ, ϑ)
is equivalent to vx − Lv = DN ζ(u)v, where v is given by v = DGζ(w, θ)(ϕ, ϑ).

The proofs of Lemmas 4.2–4.4 are now straightforward.
Proof of Lemma 4.2. The smoothness of Gζ and (Gζ)−1 was shown in Lemma 4.7.

The regularity of N ζ then follows from its definition (4.17) and the smoothness of K1.
We’ve also already seen Gζ(0) = 0 and DG0(0) = I; it was (4.15). Combining this
with (4.17), we get N ζ(0) = 0 and DN0(0) = 0. The symmetry Gζ ◦ S = S ◦ Gζ

follows directly from the definition of Gζ given at the start of section 4.1.2. From the
definition of K we also have K1 ◦ S = −S ◦ K1, K ζ

2 ◦ S = K ζ
2 , and K3 ◦ S = K3,

which, combined with (4.17), yields N ζ ◦ S = −S ◦N ζ .
Now suppose that F (ζ, w) = 0, and set θ = wx/(Hs+ws). By Lemma 4.5, if |w|2

is sufficiently small, (w, θ) ∈ C1
0 (R, X)∩C0

0 (R, V ) solves the evolution equation (4.10).
Since w is even, we also have the reversibility (w, θ)(−x) = S(w, θ)(x). Assuming |ζ|
is also sufficiently small, we can define u = Gζ(w, θ), which solves ux − Lu = N ζ(u).
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Using Gζ ◦ S = S ◦ Gζ we check that u is also reversible, u(−x) = Su(x). Finally,
since Gζ(0, 0) = 0, we have u ∈ C1

0 (R, X) ∩C0
0 (R, V ).

Proof of Lemma 4.3. Suppose u ∈ C3
σ(R, X)∩C2

σ(R, U) is a reversible solution of
ux − Lu = N ζ(u). Combining Lemma 4.8 and Lemma 4.6 we see that u = Gζ(w, θ),
where w ∈ X e

σ solves (4.8), and that the correspondence u �→ w has the desired
continuity properties.

Proof of Lemma 4.4. Let u,w be as in Lemma 4.3, and suppose that ϕ ∈ X e
σ is

a nontrivial solution of the linearized problem Fw(ζ, w)ϕ = 0. Set

h = H + w, θ =
wx

hs
, ϑ =

ϕx

hs
− θ

ϕs

hs
, v = DGζ(w, θ)(ϕ, ϑ).

Since DGζ(w, θ) is invertible and ϕ �≡ 0, we have v �≡ 0. We know from section 4.1.1
that (ϕ, ϑ) ∈ C1

σ(R, X) ∩ C0
σ(R,D(L)) solves the linearized problem (4.14), so by

section 4.1.2 we have vx − Lv = DN ζ(u)v. The definitions of θ and ϑ together with
w, θ ∈ C2+β

σ (Ω) imply that ‖(w, θ)‖Y and ‖(ϕ, ϑ)‖Y are bounded uniformly in x, so,
by the smoothness of Gζ , ‖v(x)‖Y is also bounded uniformly in x. Using the equation
solved by v, the smoothness of N ζ , and the boundedness of u, we then have

‖vx‖X = ‖DN ζ(u)v + Lv‖X ≤ C(‖v‖X + ‖v‖Y )
uniformly bounded in x, so v ∈ C1

b(R, X) ∩ C0
b(R,D(L)). Finally, from the evenness

of ϕ in x and Gζ ◦S = S ◦Gζ , we conclude that v is reversible, v(−x) = Sv(x).

4.2. Linearization about trivial solutions. In this section we will consider
the linear operator L defined by (4.3)–(4.4) in more detail, as well as inhomogeneous
linear systems vx − Lv = g and nonautonomous systems vx − Lv =M(x)v.

The operator L is strongly related to the Sturm–Liouville problem

−(a3η′)′ = νaη, −a3η′(1) + αcrη(1) = 0, η(0) = 0,(4.18)

for η ∈ C2[0, 1] and ν ∈ R. We begin with a lemma from [18, Lemma 3.3 and following
discussion] on the spectrum of L.

Lemma 4.9. Let ν0 < ν1 < · · · be the eigenvalues of (4.18). Then ν0 = 0, and
the following hold:

(i) The spectrum of L : D(L) ⊂ X → X consists of the algebraically simple
eigenvalues {±√

νk}∞k=1 together with an eigenvalue at 0 with algebraic multiplicity 2.
The generalized eigenvectors u1, u2 with Lu1 = 0 and Lu2 = u1 are

u1 =

(∫ s

0

a−3(t) dt, 0

)
, u2 =

(
0, a(s)

∫ s

0

a−3(t) dt

)
.

All of these eigenvalues are geometrically simple.
(ii) There exist real constants C, ξ0 > 0 such that

‖u‖Y ≤ C‖(L− iξI)u‖X , ‖u‖X ≤ C

|ξ| ‖(L− iξI)u‖X

for all u ∈ Y and real ξ with |ξ| > ξ0.
Proof. Part (i) follows from an analysis of the Sturm–Liouville problem (4.18),

see [18]. To prove part (ii), we argue as in Lemma 3.4 of [17]. Let (w, θ) ∈ D(L) and
set (f, g) = (L − iξ)(w, θ). Then

a−1θ − iξw = f, −(a3ws)s − iξθ = g,(4.19)

−a3ws(1) + αw(1) = 0, w(0) = θ(0) = 0.(4.20)
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Rewriting a3|fs|2 + a−1|g|2 using (4.19), integrating by parts, and then using (4.20)
we obtain

C1(‖f‖2H1 + ‖g‖2L2) ≥ ‖w‖2H2 + ‖θ‖2H1 + |ξ|2(‖w‖2H1 + ‖θ‖2L2)− C2|ξ||ws(1)θ(1)|.
(4.21)

It remains only to treat the rightmost term in (4.21). By (4.20), |ws(1)| ≤ C‖ws‖L2 .
To estimate |θ(1)|, we let ε ∈ (0, 1) and use (4.19) to get

(a−1(1)θ(1))2 =

∫ 1

0

2(a−1θ)s(a
−1θ) ds ≤ ε2|ξ|2‖ws‖2L2 + ε2‖fs‖2L2 +

C

ε2
‖θ‖2L2.

The statement then follows by first taking ε sufficiently small and then |ξ| sufficiently
large.

Let Xc ⊂ X be the two-dimensional “center” subspace associated with the eigen-
value 0 of L, and let P c be the spectral projection onto Xc. Writing P su = (I − P c)
and Xsu = P suX , we decompose X as X = Xc ⊕ Xsu. Here Xc and the infinite-
dimensional space Xsu are both invariant subspaces of L. We note that L is not
self-adjoint. Indeed, the eigenvalue 0 has algebraic multiplicity 2 but geometric mul-
tiplicity 1. Thus the projection P c is not guaranteed to be orthogonal.

Next we turn to the inhomogeneous linear problem vx−Lv = g. Because L has 0
as an eigenvalue with algebraic multiplicity 2, we allow v and g to grow exponentially
with a small constant and specify the two-dimensional initial condition P cv(0). This
exponential-dichotomy type result is explained in Lemma 4.10 below.

For any Hilbert space E, ν ≥ 0, and f : R → E, we define the norms

‖f‖L2
ν(R,E) = ‖e−ν|·|f‖L2(R,E), ‖f‖H1

ν(R,E) = ‖e−ν|·|f‖L2(R,E) + ‖e−ν|·|fx‖L2(R,E),

and the corresponding spaces

L2
ν(R, E) = {f : ‖f‖L2

ν(R,E) <∞}, H1
ν (R, E) = {f ∈ L2

ν(R, E) : fx ∈ L2
ν(R, E)}.

Lemma 4.10. If ν > 0 is sufficiently small, then the linear system

vx − Lv = g, P cv(0) = η(4.22)

has a unique solution v ∈ H1
ν (R, X) ∩ L2

ν(R,D(L)) for all g ∈ L2
ν(R, X) and η ∈ Xc.

Moreover,

‖v‖L2
ν(R,Y ) + ‖v‖H1

ν(R,X) ≤ C(‖η‖X + ‖g‖L2
ν(R,X)),

where the constant C depends only on ν and L.
Proof. Using the decomposition X = Xc ⊕ Xsu, we write v = (vc, vsu), g =

(gc, gsu), and L = (Lc, Lsu), where Lc = L|Xc : Xc → Xc and similarly for Lsu. Then
(4.22) can be written as two decoupled equations

vsux − Lsuvsu = gsu,(4.23)

vcx − Lcvc = gc, vc(0) = η.(4.24)

The first equation, (4.23), is an infinite-dimensional equation whose linear operator
Lsu has its spectrum bounded away from the imaginary axis. We claim that for ν > 0
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sufficiently small, the unique solution vsu ∈ H1
ν (R, X

su) ∩ L2
ν(R,D(Lsu)) of (4.23)

satisfies

‖vsu‖H1
ν(R,X) + ‖vsu‖L2

ν(R,D(L)) ≤ C‖gsu‖L2
ν(R,X).

Thanks to the bounds in Lemma 4.9, the claim with ν = 0 follows by taking a Fourier
transform in x; the estimate for ν > 0 is then obtained by a simple perturbation
argument; see, for instance, [35, 36]. The second equation, (4.24), is a two-dimensional
linear system whose linear operator Lc is a 2×2 Jordan block with eigenvalue 0. Thus
an elementary argument shows that the solution vc of (4.24) satisfies

‖vc‖H1
ν(R,X

c) ≤ C(‖η‖X + ‖gc‖L2
ν(R,R

n)),

where the constant C again depends only on ν and Lc. The lemma then follows from
combining the above results for (4.23) and (4.24).

The following lemma extends Lemma 4.10 to nonautonomous perturbations of L.
Lemma 4.11. Suppose M(x) : D(L) → X is a family of bounded linear operators

depending on x ∈ R, and that ‖M(x)‖D(L)→X ≤ ε for all x. If ε is sufficiently small,
then the nonautonomous linear system

vx − Lv =M(x)v, P cv(0) = η(4.25)

has a unique solution v ∈ H1
ν (R, X) ∩ L2

ν(R,D(L)) for each η ∈ Xc.
Proof. We first consider the inhomogeneous system

vx − Lv =M(x)ϕ, P cv(0) = η(4.26)

with ϕ ∈ L2
ν(R,D(L)). By our assumption on M ,

‖M(x)ϕ‖L2
ν(R,X) ≤ ε‖ϕ‖L2

ν(R,D(L)).(4.27)

Setting g = M(x)ϕ in Lemma 4.10, we see that for each g ∈ L2
ν(R,D(L)), (4.26)

has a unique solution v ∈ L2
ν(R,D(L)) ∩H1

ν (R, X). Denoting this v by T η(ϕ), (4.25)
becomes the fixed point equation v = T η(v). Lemma 4.10 and (4.27) give an estimate

‖T η(ϕ)‖L2
ν(R,D(L)) ≤ C(‖η‖X + ε‖ϕ‖L2

ν(R,D(L))),

where the constant C is independent of η. The identity T η(w1)−T η(w2) = T 0(w1−w2)
for w1, w2 in L2

ν(R,D(L)) then yields

‖T η(w1)− T η(w2)‖L2
ν(R,D(L)) ≤ Cε‖w1 − w2‖L2

ν(R,D(L)).

Picking ε < 1/C, T η is therefore a uniform contraction L2
ν(R,D(L)) → L2

ν(R,D(L)),
and hence (4.25) has a unique solution v ∈ L2

ν(R,D(L)). Combining this with the
equation vx = Lv +M(x)v, we have v ∈ H1

ν (R, X).

4.3. Center manifold reduction. In this section, we will describe the two-
dimensional center manifold M ζ constructed in [18]. This manifold contains all small
bounded solutions u of ux = Lu+N ζ(u), and in particular all small-amplitude solitary
waves.

Let U ⊂ D(L) and Λ be the neighborhoods of the origin from Lemma 4.2, and let
U c = P cU be the projection of U onto the two-dimensional space Xc. We also fix a
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basis {e1, e2} of Xc given by e1 = d−1
1 u1, e2 = d−1

1 u2, where u1, u2 are the generalized
eigenvectors from Lemma 4.9 and

d21 =

∫ 1

0

a(s)

(∫ s

0

a−3(t) dt

)
ds

is a constant. The results of the center manifold construction in [18] that we need are
summarized by the following lemma.

Lemma 4.12. Fix an integer k ≥ 2. After possibly shrinking Λ and U , there ex-
ists, for each ζ ∈ Λ, a two-dimensional manifoldM ζ ⊂ U with an invertible coordinate
map χζ : M ζ → U c satisfying the following properties:

(i) Every initial condition u0 ∈ M ζ determines a unique solution u of ux =
Lu+N ζ(u) which remains in M ζ as long as it remains in U .

(ii) If u solves ux = Lu + N ζ(u) and satisfies u(x) ∈ U for all x, then u lies
entirely in M ζ .

(iii) Defining rζ : U c → U by

uc + rζ(uc) = (χζ)−1(uc),(4.28)

the map (ζ, u) �→ rζ(u) is Ck(Λ × U c, U). Moreover, rζ(0) = 0 for all ζ ∈ Λ and
Dr0(0) = 0.

(iv) If uc ∈ C1((a, b), U c) solves the reduced system

ucx = f ζ(uc) := Dχζ(u)(Lu+N ζ(u)), where u = uc + rζ(uc),(4.29)

then u = uc + rζ(uc) solves the full equation ux − Lu = N ζ(u).
(v) The two-dimensional system (4.29) is reversible. Writing uc ∈ U c as uc =

qe1 + pe2 and setting c0 = α3
cr

∫ 1
0 a

−5(s) ds, we have

qx = p+R1(q, p; ζ), px =
ζ

α2
crd

2
1

q − 3c0
2α3

crd
3
1

q2 +R2(q, p; ζ),(4.30)

where the Ck error terms R1, R2 are odd and even in p, respectively, and satisfy the
bounds

R1 = O
(|(q, p)| · |(ζ, q, p)|),

R2 = O
(|p| · |(ζ, q, p)|)+O

(|q, p| · |(ζ, q, p)|2).(4.31)

The action of the reverser in these coordinates is (q, p) �→ (q,−p).
Proof. Since this is shown in [18], we only give a brief outline. The first step

is to apply Theorem 3.1 in [18], which is a parametrized, Hamiltonian version of a
reduction principle for quasilinear evolution equations originally due to Mielke [36],
making use of the Hamiltonian structure of ux − Lu = N ζ(u) and Lemma 4.9. This
gives a center manifoldM ζ with a coordinate map χ̃ζ : M ζ → U c satisfying conditions
(i)–(iv). Several changes of coordinates are then performed, which finally allow (4.30)
to be obtained by Taylor expansion.

Lemma 4.12 has the following easy corollary concerning linearized problems.
Corollary 4.13. Let u, uc be as in (iv) of Lemma 4.12. If vc ∈ C1(R, U c)

solves the linearized reduced equation vcx = Df ζ(uc)vc, then v = vc+Drζ(uc)vc solves
the full linearized equation vx − Lv = DN ζ(u)v.

Proof. The statement follows from plugging u = uc+ rζ(uc) into the full equation
ux − Lu = N ζ(u) and differentiating both sides with respect to uc.
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Q

P

Fig. 2. Phase portrait of the rescaled system (4.33) with ζ > 0 small.

4.4. Existence and uniqueness of small-amplitude solutions. We now
construct homoclinic orbits uζ of ux −Lu = N ζ(u) and solutions vζ of the associated
linearized problems by lifting solutions of the reduced equations.

Lemma 4.14. There exists ζ∗ > 0 such that ux − Lu = N ζ(u) has a reversible
homoclinic orbit uζ for 0 < ζ < ζ∗ with the following properties:

(i) uζ satisfies an exponential bound

3∑
k=0

‖Dkuζ(x)‖D(L) ≤ Cζe−c
√
ζ·|x|

for some positive constants C, c independent of x and ζ.
(ii) There exists a solution vζ of the linearized problem vζx = Lvζ +DN ζ(uζ)vζ

which is linearly independent from uζx, unbounded in Y as x→ ±∞, and satisfies the

exponential growth estimate ‖vζ(x)‖Y ≤ Ce+c
√
ζ·|x| for some positive constants C, c

independent of x and ζ.
(iii) The map ζ �→ uζ is continuous from the interval (0, ζ∗) to C3

σ(R, X) ∩
C2

σ(R,D(L)).
Proof. In the notation of part (v) of Lemma 4.12, we introduce, for ζ > 0, the

scaled variables

X =

√
ζ

αcrd1
x, q(x) =

αcrd1
c0

ζQ(X), p(x) =
ζ3/2

c0
P (X),(4.32)

so that (4.30) becomes

QX = P +R3(Q,P ; ζ), PX = Q − 3

2
Q2 +R4(Q,P ; ζ),(4.33)

where R3 and R4 are O(ζ1/2) and, respectively, odd and even in P . Sending ζ → 0
in (4.33) we’re left with the system QX = P , PX = Q − 3

2Q
2, which has a reversible

homoclinic orbit Q0(X) = sech2(X/2). Exploiting reversibility as in section 4.1 of
[17], we conclude that the phase portrait of (4.33) is qualitatively the same for ζ > 0
sufficiently small, say 0 < ζ < ζ∗; see Figure 2. In particular, (4.33) has a reversible
homoclinic orbit (Qζ , P ζ) with Qζ > 0. Since (Qζ , P ζ)(0) and the local stable and
unstable manifolds of (4.33) at (0, 0) depend continuously on ζ, we have uniform
bounds

3∑
k=0

|Dk
X(Qζ , P ζ)| ≤ Ce−

1
2 |X|.
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Defining (qζ , pζ) in terms of (Qζ , P ζ) by (4.32), we therefore have a reversible ho-
moclinic orbit uζ,c = qζe1 + pζe2 of (4.29) with the similar exponential bound∑3

k=0|Dk
xu

ζ,c| ≤ C1ζe
−C2

√
ζ|x| for some positive constants C1, C2. Since our weight

function σ grows more slowly than any exponential, the continuity of ζ �→ uζ,c from
the interval (0, ζ∗) to C3

σ(R, U
c) then follows from the continuity of ζ �→ uζ,c(0).

Now we consider the linearized reduced equation

vcx = Df ζ(uζ,c)vc.(4.34)

Differentiating (4.29), we get as usual that vc = uζ,cx is a solution of (4.34). Since
(4.34) is a two-dimensional system, it has one other linearly independent solution,
which we denote by vζ,c. Looking at (4.30)–(4.31), we see that Df ζ(0) has eigenvalues
±√

ζ + O(ζ) corresponding to eigenvectors e1 ± √
ζe2 + O(ζ). By an elementary

argument (for instance, Problem 29 in Chapter 3 of [8]), vζ,c is unbounded as x→ ±∞
with

|vζ,c2 (x)| ≤ C1e
+C2

√
ζ·|x|,

where the constants C1, C2 > 0 can be chosen independently of ζ. Define

uζ = uζ,c + rζ(uζ,c), vζ = vζ,c +Drζ(uζ,c)vζ,c.

By Lemma 4.12(iv), uζ is a reversible homoclinic orbit of the full system ux − Lu =
N ζ(u), and by Corollary 4.13, vζ is a solution of the full linearized system vx −
Lv = DN ζ(u)v, linearly independent from uζx. Thanks to the properties of rζ from
Lemma 4.12(iii), our exponential estimates for uζ,c, vζ,c carry over to uζ , vζ , after
possibly shrinking ζ∗. Similarly the continuity of ζ �→ uζ,c in C3

σ(R, U
c) implies the

continuity of ζ �→ uc in C3
σ(R, X) ∩ C2

σ(R,D(L)).
Combining Lemma 4.14 with Lemma 4.11, we now show that any solution of

vx −Lv = DN ζ(uζ)v with at most mildly exponential growth as x→ ±∞ must be a
linear combination of vζ , uζx.

Lemma 4.15. Let 0 < ζ < ζ∗ and uζ , vζ be as in Lemma 4.14, and let ν > 0 be
as in Lemma 4.10. After possibly shrinking ζ∗, the space of solutions v to

vx − Lv = DN ζ(uζ)v,(4.35)

v ∈ H1
ν (R, X) ∩ L2

ν(R,D(L))(4.36)

is two-dimensional and spanned by vζ , uζx.
Proof. Set M(x) = DN ζ(uζ(x)). We first claim that, after possibly shrinking ζ∗,

the system

vx − Lv =M(x)v, P cv(0) = η,

has a unique solution v ∈ L2
ν(R,D(L)) ∩ H1

ν (R, X) for each η ∈ Xc. We know that
N ζ : U → X is smooth with DN0(0) = 0, and Lemma 4.14 gives ‖uζ(x)‖D(L) ≤ C|ζ|.
Combining these facts we have

‖M(x)‖D(L)→X = ‖DN ζ(uζ(x))‖D(L)→X ≤ C(‖uζ(x)‖ + ζ) ≤ Cζ

for all x. Picking ζ∗ sufficiently small, the claim then follows from Lemma 4.11.
Since Xc is two-dimensional, the space of solutions v to (4.35)–(4.36) is also two-

dimensional. Thus, to prove the lemma, it suffices to show that vζ , uζx are linearly
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independent solutions of (4.35)–(4.36). From Lemma 4.14 we know that vζ , uζx are
linearly independent solutions of (4.35), so all that remains to show is the integrability
vζ , uζx ∈ L2

ν(R,D(L)) ∩ H1
ν (R, X). By part (i) of Lemma 4.14, uζx and uζxx decay

exponentially in D(L) as x → ±∞, so in particular uζx ∈ H1
ν (R,D(L)). Now we

consider vζ . By part (ii) of Lemma 4.14 we have ‖vζ(x)‖D(L) ≤ Ce+c
√
ζ·|x|, where

c > 0 is independent of ζ. Thus vζ ∈ L2
ν(R,D(L)) as long as c|ζ∗|1/2 < ν. Finally,

the equation vζx = Lvζ +M(x)vζ implies vζ ∈ H1
ν (R, X).

Finally, we prove Theorem 4.1 by combining Lemmas 4.3, 4.4, 4.14, and 4.15.
Proof of Theorem 4.1. Let ζ∗, uζ , vζ be as in Lemmas 4.14 and 4.15. Combining

Lemma 4.3 with Lemma 4.14 we see that uζ corresponds to a nontrivial solution
wζ ∈ X e

σ of F (ζ, w) = 0, depending continuously on 0 < ζ < ζ∗ and with |wζ |2+β → 0
as ζ → 0, which is (i).

Next we show (ii), that the linearized operators Fw(ζ, w
ζ) are invertible for 0 <

ζ < ζ∗. By Corollary 3.5, Fw(ζ, w
ζ) is Fredholm of index 0, so it suffices to show that

it has trivial kernel. Fix 0 < ζ < ζ∗ and assume for contradiction that 0 �= ϕ ∈ X e
σ

satisfies Fw(ζ, w
ζ)ϕ = 0. Let v ∈ C1

b(R, X) ∩ C0
b(R,D(L)) be the corresponding

nontrivial solution of vx − Lv = DN ζ(uζ)v given by Lemma 4.4, and recall that
v(−x) = Sv(x). Pick ν > 0 as in Lemma 4.15. Since v ∈ H1

ν (R, X) ∩ L2
ν(R,D(L)),

we have by Lemma 4.15 that v is a linear combination of vζ , uζx. Since ‖vζ(x)‖Y is
unbounded by Lemma 4.14(ii), v must be a scalar multiple of uζx. Differentiating
uζ(−x) = Suζ(x) we discover uζx(−x) = −Suζx(x), and hence v(−x) = −Sv(x). But
we already know v(−x) = Sv(x), so this forces Sv(x) ≡ 0 and hence v ≡ 0.

Now we show (iii). Let (ζ, w) be a nontrivial solution of F (ζ, w) = 0 with ζ > 0
and |ζ| + |w|2 < δ, and assume for contradiction that w �= wζ . By the monotonicity
of w and wζ (Proposition 2.2), w is not a translate of wζ . If δ is sufficiently small,
Lemma 4.12 implies that

u = Gζ

(
w,

wx

Hs + ws

)
= qe1 + pe2 + rζ(qe1 + pe2),

where uc = qe1 + pe2 is a reversible homoclinic orbit of the two-dimensional reduced
equation, (4.29). Moreover, uc is not a translate of uζ,c, where uζ,c = qζe1 + pζe2
is the solution of the reduced equation associated to wζ . Tracing back the various
changes of variable, we have

w(x, s) = q(x)e1(s) +R(x, s),

where the remainder term R satisfies

‖R(x, · )‖H2(0,1) ≤ C
(|ζ|+ |q|+ |p|)(|q|+ |p|)

with the constant C independent of ζ. We take δ small enough that the above estimate
implies

|R(x, 1)| ≤ e1(1)

2

(|q(x)|+ |p(x)|).(4.37)

Now we analyze the reduced system (4.29) near the saddle point 0. Since (4.29)
already has one homoclinic orbit uζ,c, we can find the angles at which uc approaches
0 as x → ±∞; see Figure 2. As mentioned in the proof of Lemma 4.14, Df ζ(0) has
eigenvalues ±√

ζ + O(ζ) corresponding to the eigenvectors e1 ±
√
ζe2 + O(ζ). Thus
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we have q < 0 for |x| sufficiently large, and

lim
x→±∞

p

q
= ∓
√
ζ +O(ζ).(4.38)

Further shrinking δ, (4.37) and (4.38) imply

|R(x, 1)| ≤ 3e(1)|q(x)|
4

< e(1)|q(x)|(4.39)

for |x| sufficiently large. Thus, for |x| large enough that q < 0 and (4.39) both hold,

w(x, 1) = q(x)e1(1) +R(x, 1) < 0.

But (ζ, w) is a nontrivial supercritical solitary wave, so w(x, 1) > 0 by Proposition 2.1,
a contradiction.

5. Global continuation. In this section we will prove Theorem 1.3. Our first
step in this direction is Theorem 5.2, which we will prove in sections 5.1–5.4 using
a topological degree argument. Given δ > 0 and an arbitrary weight function σ
satisfying the assumptions of section 3.1, Theorem 5.2 asserts that a certain subset
C δ,+
σ of C is either unbounded in R×X e

σ or contains solutions with ζ = δ or ζ = αcr−δ.
In section 5.1, we will define the weighted continuum C δ

σ , which is a connected subset
of R × X e

σ containing solutions with δ ≤ ζ ≤ αcr − δ. In section 5.2, we will use
the invertibility results from sections 3–4 to show that removing a point in Cloc from
C δ
σ splits it into exactly two components, the more interesting of which is C δ,+

σ . In
section 5.3, we will use the results of section 3 to define the Healey–Simpson degree
for our nonlinear operator F . We will then use this degree in section 5.4 to prove
Theorem 5.2, again using the invertibility from section 4.

In sections 5.5–5.7, we will prove Theorem 1.3 by analyzing the alternatives in
Theorem 5.2 as δ → 0. If C δ,+

σ is unbounded, then, since we always have 0 < ζ < αcr,
there must be a sequence in C δ,+

σ with |σwn|2+β → ∞. In section 5.5, we will
reduce this condition to |σwn|0 + |∂swn|0 → ∞. To accomplish this we will use
the lower bound on the pressure in Lemma 2.9, the weighted Schauder estimates
from Appendix A, and regularity results of Lieberman [32] for fully nonlinear elliptic
problems. In section 5.6 we will use the equidecay result from section 2 to construct a
particular weight function σ for which this condition further reduces to |∂swn|0 → ∞.
This yields (i) in Theorem 1.3. In section 5.7, we will send δ → 0 and address
the remaining possibilities, that there exist solutions (ζn, wn) ∈ C with ζn → 0 or
ζn → αcr. For ζ near αcr, we will obtain alternative (ii) of Theorem 1.3 by using the
upper bound Proposition 2.3 on the Froude number. Finally, for ζn near 0, we will
use the uniqueness result from section 4 to obtain alternative (iii).

5.1. The weighted continuum. We first recall Definition 1.2. The set S of
supercritical solitary waves is

S =
{
(ζ, w) : (ζ, w) satisfies (1.19), 0 < ζ < αcr

}
,

which we view as a subset ofR×C2+β
b (Ω), and the global continuum C is the connected

component of S in R × C2+β
b (Ω) containing Cloc. Here Cloc is the local curve of

nontrivial solutions given by Theorem 4.1,

Cloc =
{
(ζ, wζ ) : 0 < ζ < ζ∗

}
, where |wζ |2+β → 0 as ζ → 0.
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ζ

w

R

ζ0 ζ1δ αcr − δ
ζ

C

w

T

S \ (C ∪ T )

(ζ0, w0)

(a) (b)

ζ∗

C δ,+
σ

Fig. 3. (a) The components of S \ {(ζ0, w0)} in Lemma 5.3. The bold portion of C is Cloc.
(b) The neighborhood U in the proof of Theorem 5.2. U is the shaded region, R is the strip with

ζ0 < ζ < ζ1, and C δ,+
σ is drawn in bold.

We now define analogues of S and C in weighted spaces. Fix a weight function
σ as in section 3.1, and define the weighted spaces X e

σ ,Y
e
σ as in (3.2), (3.5). Recall

the open subset Uσ ⊂ X e
σ defined in (3.3),

Uσ =

{
w ∈ X e

σ : inf
Ω
(Hs + ws) >

δ∗
2

}
,

where δ∗ > 0 is fixed and given by Proposition 2.4. As in section 3.4, we introduce a
small parameter 0 < δ < ζ∗ and work with (ζ, w) in the set [δ, αcr − δ] × Uσ, where
the usual inequalities 0 < ζ < αcr hold uniformly. For convenience, we shrink ζ∗ so
that 2ζ∗ < αcr.

Definition 5.1 (weighted continuum). For 0 < δ < ζ∗, define

S δ
σ := S ∩ ([δ, αcr − δ]× Uσ

) ⊂ R× C2+β
σ (Ω).

The weighted continuum C δ
σ is the connected component of S δ

σ in R×C2+β
σ (Ω) con-

taining Cloc ∩ S δ
σ .

We are now ready to state the first main result of this section.
Theorem 5.2 (global continuation). Fix 0 < δ < ζ∗ and (ζ0, w0) ∈ Cloc ∩ C δ

σ .
Then C δ

σ \ {(ζ0, w0)} has exactly two connected components. One component is
Cloc ∩ {δ ≤ ζ < ζ0}, and the other component C δ,+

σ is either unbounded or meets
the boundary of (δ, αcr − δ)× Uσ.

5.2. Connectedness properties. In this section we will prove the disconnect-
edness statement in Theorem 5.2 using the implicit function theorem and the invert-
ibility of Fw(ζ, w) given by Corollary 3.4 and part (ii) of Theorem 4.1. Our first
lemma asserts that S has at least two components and that removing a point in Cloc

splits it into at least three; see Figure 3(a).
Lemma 5.3. Let T = {(ζ, 0) : 0 < ζ < αcr} denote the set of trivial solutions in

S . Then T is a connected component of S . In particular, since connected compo-
nents are disjoint, C ∩T = ∅. Moreover, for each (ζ0, w0) ∈ Cloc, S \ {(ζ0, w0)} has
at least three connected components, of which the two least interesting components are
T and Cloc∩{ζ < ζ0}. Here as always we topologize S as a subset of R×C2+β

b (Ω).
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Proof. Since we are working in unweighted spaces, it is useful to have an un-
weighted version of our nonlinear operator F . To make this precise, we set

Ub =

{
w ∈ X e

b : inf
Ω
(Hs + ws) >

δ∗
2

}
,

where δ∗ is given in Proposition 2.4, and define Fb : (0, αcr)×Ub → Y e
b by the same

formula, (3.4), used to define F .
First consider T . Clearly T is connected (indeed path connected) and relatively

closed as a subset of S . It remains to show that T is relatively open. For each
(ζ, 0) ∈ T , Fb(ζ, 0) = 0. Moreover, Fb

w(ζ, 0) is invertible X e
b → Y e

b by Corol-
lary 3.4. Thus relative openness follows from the implicit function theorem. The
same argument shows that T is a connected component of S \ {(ζ0, w0)} for any
(ζ0, w0) ∈ Cloc. Since C ⊂ S is connected and C �⊂ T , we must have C ∩ T = ∅.

Now pick (ζ0, w0) ∈ Cloc. Since ζ �→ wζ is continuous (0, ζ∗) → X e
b , we eas-

ily check that Cloc ∩ {ζ < ζ0} is a relatively closed subset of S \ {(ζ0, w0)}. For
any (ζ, wζ) ∈ Cloc, Fb(ζ, wζ) = 0, and by Theorem 4.1, Fb

w(ζ, w
ζ) is invertible

X e
b → Y e

b . Thus we can apply the implicit function theorem as before to deduce that
Cloc ∩ {ζ < ζ0} is relatively open. The third connected component of S \ {(ζ0, w0)}
is the one containing Cloc ∩ {ζ > ζ0}. Of course S might have connected compo-
nents other than C and T , in which case S \ {(ζ0, w0)} will have more than three
components.

The following elementary lemma asserts that connected subsets of S δ
σ are also

connected in S .
Lemma 5.4. Fix 0 < δ < ζ∗. If A is a connected subset of S δ

σ in R× C2+β
σ (Ω),

then A is also a connected subset of S in R× C2+β
b (Ω). In particular, C δ

σ ⊂ C .

Proof. In what follows, S is always topologized as a subset of R × C2+β
b (Ω),

while S δ
σ is topologized as a subset of R × C2+β

σ (Ω). To prove the first statement,
suppose that A ⊂ S δ

σ is disconnected as a subset of S . Then there exist disjoint

open sets B,C ⊂ R × C2+β
b (Ω) with A ∩ B �= ∅, A ∩ C �= ∅, and A ⊂ B ∪ C. Set

B′ = B ∩ (R× C2+β
σ (Ω)) and C′ = C ∩ (R× C2+β

σ (Ω)). Then B′ and C′ are disjoint
open subsets of C2+β

σ (Ω) with A ⊂ B′ ∪ C′, A ∩ B′ �= ∅, and A ∩ C′ �= ∅. Thus
A is disconnected as a subset of S δ

σ . Now we turn to C δ
σ . By construction, C δ

σ is a
connected subset of S δ

σ . By the above argument, it must also be a connected subset
of S . Since C is a connected component of S and C δ

σ ∩ C �= ∅, we must have
C δ
σ ⊂ C .

Lemma 5.5. Fix 0 < δ < ζ∗, and pick (ζ0, w0) ∈ Cloc ∩C δ
σ . Then C δ

σ \ {(ζ0, w0)}
is disconnected as a subset of R × C2+β

σ (Ω), with exactly two connected components.
One of these components is Cloc ∩ {δ ≤ ζ < ζ0}.

Proof. In what follows, S is always topologized as a subset of R × C2+β
b (Ω),

while S δ
σ is topologized as a subset of R× C2+β

σ (Ω). Assume for contradiction that
C δ
σ \ {(ζ0, w0)} is connected as a subset of S δ

σ . By Lemma 5.4, it is connected as a
subset of S . By Lemma 5.3, Cloc ∩ {ζ < ζ0} is a connected component of S which
meets C δ

σ \ {(ζ0, w0)}, so this forces C δ
σ \ {(ζ0, w0)} to be a subset of Cloc ∩ {ζ < ζ0},

a contradiction since Cloc ∩ {ζ > ζ0} ⊂ C δ
σ . Thus C δ

σ \ {(ζ0, w0)} has at least two
connected components. Applying the implicit function theorem to F near (ζ0, w0),
we conclude that C δ

σ \ {(ζ0, w0)} has exactly two components.

5.3. Topological degree. In this section we will summarize the Healey–Simpson
degree [19], which we will use to prove Theorem 5.2 in section 5.4. We note that it
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might also be possible to use the C2 degree of Fitzpatrick, Pejsachowicz, and Rabier
[13]. First we define a notion of admissibility for linear maps, taken from Definition
4.7 and Remark 4.13 in [19].

Definition 5.6. Let X,Y1, Y2 be Banach spaces with X continuously embedded
in Y1, and set Y = Y1 × Y2. We assume that X is endowed with weaker norms
‖ · ‖X′, ‖ · ‖X′′ , ‖ · ‖X′′′ such that

C′′′‖u‖X′′′ ≤ C′′‖u‖X′′ ≤ C′‖u‖X′ ≤ ‖u‖X .

We also assume the existence of weaker norms ‖ · ‖Y ′
2
, ‖ · ‖Y ′′

2
, ‖ · ‖Y ′′′

2
for Y2 and ‖ · ‖Y ′

1

for Y1 satisfying similar inequalities. Letting X ′ denote X with the norm ‖ · ‖X′ and
so on, we consider a linear operator L = (A,B) : X → Y satisfying

(A,B) ∈ L (X,Y ) ∩ L (X ′, Y ′
1 × Y ′

2), B ∈ L (X ′′, Y ′′
2 ) ∩ L (X ′′′, Y ′′′

2 ),(5.1)

where L (E,F ) denotes the space of bounded linear operators E → F . Such an oper-
ator L is said to be admissible if, in addition to (5.1), the following hold:

(i) L is a Fredholm operator of index 0.
(ii) B is surjective.
(iii) There exist constants β,C1, C2 > 0 such that

C1

(
‖u‖X + |κ|‖u‖X′ + |κ|1/2‖u‖X′′ + |κ|β+1/2‖u‖X′′′

)
≤ ‖(A− κI)u‖Y1 + |κ|β‖(A− κI)u‖Y ′

1

+ ‖Bu‖Y2 + |κ|β‖Bu‖Y ′
2
+ |κ|1/2‖Bu‖Y ′′

2
+ |κ|β+1/2‖Bu‖Y ′′′

2

for all u ∈ X and real κ ≥ C2.
(iv) There exists an open neighborhood N of the ray {μ : μ ≥ 0} ⊂ C such that

Σ(A,B)∩N consists of finitely many eigenvalues, each of finite algebraic multiplicity.
Here, as in Definition 3.8, Σ(A,B) is the spectrum of A, considered as an unbounded
operator Ã : X → Y with domain D(Ã) = X ∩ kerB.

Using Definition 5.6, we next define admissibility for nonlinear operators. This is
Definition 4.10 together with Remark 4.13 in [19].

Definition 5.7. In the setting of Definition 5.6, let W ⊂ X be open and bounded

and let W
′
denote W endowed with the X ′ topology and similarly for W

′′
, W

′′′
. A

map F = (F1, F2) : W → Y is admissible if the following hold:
(i) F and Fu have the regularity

F ∈ C2(W,Y ) ∩C0(W,Y ), Fu ∈ C0(W
′
,L (X ′, Y ′

1 × Y ′
2)),

F2u ∈ C0(W
′′
,L (X ′′, Y ′′

2 )) ∩ C0(W
′′′
,L (X ′′′, Y ′′′

1 )).

(ii) For each u ∈W , Fu(u) is admissible according to Definition 5.6.
(iii) F : W → Y is locally proper.
Suppose that F : W → Y is admissible and y ∈ Y \ F (∂W ) is a regular value of

F . By this we mean that Fu(u) is surjective (and hence invertible since it is Fredholm
of index 0) for all u ∈ F−1(y) ∩W . Then F−1(y) ∩W is finite, and we define

deg(F,W, y) =
∑

u∈F−1(y)∩W

(−1)ν(u),
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where ν(u) is the number, counted according to algebraic multiplicity, of positive
eigenvalues in Σ(Fu(u)), which is finite by admissibility, and where the sum over
the empty set is 0. If y /∈ F (∂W ) is not a regular value, we define deg(F,W, y) to be
deg(F,W, ỹ) for some nearby regular value ỹ which exists by the Sard–Smale theorem;
see [19].

We need two properties of the degree. The first is additivity.
Lemma 5.8 (additivity). Suppose that W 1,W 2 ⊂ X are bounded open sets with

W 1 ∩W 2 = ∅ and that F : W
1 ∪W 2 → Y is admissible. If y /∈ F (∂W 1 ∪ ∂W 2), then

deg(F,W 1 ∪W 2, y) = deg(F,W 1, y) + deg(F,W 2, y).

Proof. Let ỹ be a regular value for F |W 1∪W 2 , close enough to y that

deg(F,W 1 ∪W 2, y) = deg(F,W 1 ∪W 2, ỹ), deg(F,W i, y) = deg(F,W i, ỹ),

for i = 1, 2. The statement then follows from∑
u∈F−1(ỹ)∩(W 1∪W 2)

(−1)ν(u) =
∑

u∈F−1(ỹ)∩W 1

(−1)ν(u) +
∑

u∈F−1(ỹ)∩W 2

(−1)ν(u).

The most important property of degree for us is invariance under homotopy, which
is proven in Proposition 4.12 of [19] and the following remarks. For Υ ⊂ [0, 1] ×W
and t ∈ [0, 1], define the section

Υt = {u ∈ W : (t, u) ∈ Υ}.(5.2)

Definition 5.9. For Υ ⊂ [0, 1]×W open, we say that H : Υ → Y is an admissible
generalized homotopy if H ∈ C2(Υ, Y ) is proper and H(t, · ) is admissible for each t.
We call t ∈ [0, 1] the parameter of the homotopy.

Lemma 5.10 (homotopy invariance). If H : Υ → Y is an admissible generalized
homotopy, and y /∈ H(∂Υt) for t ∈ [0, 1], then

deg(H(0, · ),Υ0, y) = deg(H(1, · ),Υ1, y).

5.4. Global continuation. In the notation of section 5.3, we take

X = X e
σ , ‖ · ‖X′ = |σ · |2, ‖ · ‖X′′ = |σ · |1+β , ‖ · ‖X′′′ = |σ · |1,

Y2 = C1+β
σ,e (T ), ‖ · ‖Y ′

2
= |σ · |1, ‖ · ‖Y ′′

2
= |σ · |β , ‖ · ‖Y ′′′

2
= |σ · |0,

Y1 = Cβ
σ,e(Ω), ‖ · ‖Y ′

1
= |σ · |0,

where the spaces X e
σ ,Y

e
σ are defined in (3.2) and (3.5). (We will not need to reference

the spaces X,Y used in section 4 again.) The following lemma will allow us to apply
Lemma 5.10 to our nonlinear operator F .

Lemma 5.11. For any δ > 0, F : [δ, αcr − δ] × Uσ → Y e
σ is an admissible gen-

eralized homotopy with parameter ζ. In particular, F |Υ is an admissible generalized
homotopy for any open Υ ⊂ (δ, αcr − δ)× Uσ.

Proof. First we claim that for (ζ, w) ∈ [δ, αcr − δ] × Uσ , the linear operator
(A ,B) = Fw(ζ, w) is admissible according to Definition 5.6. Condition 1 is Corol-
lary 3.5, condition 3 is a special case of Lemma 3.7, and condition 4 is Lemma 3.9.
Finally, condition 2 is a consequence of condition 4: by 4, there exists κ ∈ C such
that

(A − κI,B) : X e
σ → Y e

σ = C2+β
σ,e (Ω)× C1+β

σ,e (T )
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is onto. Thus B : X e
σ → C1+β

σ,e (T ) must be onto. Next we claim F (ζ, · ) : Uσ → Y e
σ

is admissible according to Definition 5.7 for δ < ζ < ∞. The regularity condition 1
is easily checked. We then have local properness 3 by Theorem 3.10. Finally, we use
Theorem 3.10 yet again to get the local properness of F : (δ, αcr − δ) × Uσ → Y e

σ .
Since F is C2, we conclude that F is an admissible generalized homotopy.

Proof of Theorem 5.2. We follow the proof of Theorem II.6.1 in [26]. By
Lemma 5.5, we know that C δ

σ \ {(ζ0, w0)} has two components, one of which is

C δ,−
σ := Cloc ∩ {δ ≤ ζ < ζ0}.

Assume for contradiction that the other component C δ,+
σ is bounded and does not

meet the boundary of (δ, αcr − δ) × Uσ. By local properness (Theorem 3.10), the

closed set C δ,+
σ = C δ,+

σ ∪ {(ζ0, w0)} is compact.
Pick a point (ζ1, w1) ∈ Cloc with ζ1 > ζ0. By Theorem 4.1, the linear operator

Fw(ζ, w
ζ ) is invertible for each ζ0 ≤ ζ ≤ ζ∗. Therefore wζ is the unique solution of

F (ζ, w) = 0 locally, that is, we can shrink ε1 so that w = wζ whenever F (ζ, w) = 0,
ζ0 ≤ ζ ≤ ζ1, and ‖w − wζ‖X e

σ
≤ ε1. Consider the open strip

R :=
{
(ζ, w) ∈ R× X e

σ : ζ0 < ζ < ζ1, ‖w − wζ‖X e
σ
< ε1
}
,

as well as the portion of its boundary

∂wR :=
{
(ζ, w) ∈ R× X e

σ : ζ0 ≤ ζ ≤ ζ1, ‖w − wζ‖X e
σ
= ε1
}
.

We have just shown that R ∩ S ⊂ Cloc and ∂wR ∩ S = ∅. Defining sections
Rζ = {w : (ζ, w) ∈ R} as in (5.2), the definition of the degree then gives

deg(F (ζ, · ), Rζ , 0) = (−1)ν(ζ) �= 0, ζ0 < ζ < ζ1,(5.3)

where ν(ζ) is the number of positive eigenvalues of Fw(ζ, w
ζ ) counted according to

multiplicity.
We now construct a bounded open neighborhood U of C δ,+

σ with the following
properties:

(i) R ⊂ U ⊂ (δ, αcr − δ)× Uσ,
(ii) U ∩ ∂wR = ∅,
(iii) F �= 0 on ∂U \ {(ζ0, w0)},
(iv) (ζ0, w0) /∈ ∂(U \R).

See Figure 3(b). By assumption, C δ,+
σ does not meet the boundary of (δ, αcr−δ)×Uσ .

Our above argument shows that C δ,+
σ does not meet ∂wR. Since C δ,+

σ is a component
of C δ

σ \ {(ζ0, w0)}, and C δ
σ is a component of S δ

σ , C δ,+
σ cannot meet S δ

σ \C δ,+
σ either.

Thus there exists ε2 > 0 such that the distance between the compact set C δ,+
σ \ R

and any of the closed sets

∂((δ, αcr − δ)× Uσ), ∂wR, S δ
σ \ C δ,+

σ

is at least 2ε2. Let U
1 be the open ε2-neighborhood of C δ,+

σ \R, and set U = U1 ∪R.
Properties (i) and (ii) are clear. Property (iii) follows from F �= 0 on ∂U1 \ R and
(ζ1, w1) ∈ C δ,+

σ \R ⊂ U1. Finally, property (iv) holds because U \R ⊂ U1 is a positive
distance away from (ζ0, w0) ∈ S δ

σ \ C δ,+
σ .

Now we derive a contradiction by comparing the degree of F on various sections.
By (iii), F �= 0 on ∂U \ {(ζ0, w0)}. Thus homotopy invariance (Lemmas 5.10 and
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5.11) implies that deg(F (ζ, · ), Uζ , 0) is independent of ζ for ζ > ζ0. Since Uζ = ∅

for ζ sufficiently close to αcr, we get

deg(F (ζ, · ), Uζ , 0) = 0 ∀ζ > ζ0.

Set V = U \ R. By (iii) and (iv) we have F �= 0 on ∂V \ {(ζ1, w1)}, so homotopy
invariance implies that deg(F (ζ, · ), Vζ , 0) is independent of ζ for ζ < ζ1. Since
Vζ = ∅ for ζ sufficiently close to 0, we have

deg(F (ζ, · ), Vζ , 0) = 0 ∀ζ < ζ1.

From (ii) we have Uζ = Vζ ∪ Rζ and Vζ ∩ Rζ = ∅ for ζ0 < ζ < ζ1. Since F �= 0
on ∂wR, the additivity of the degree (Lemma 5.8) gives

deg(F (ζ, · ), Vζ , 0) + deg(F (ζ, · ), Rζ , 0) = deg(F (ζ, · ), Uζ , 0) ∀ζ0 < ζ < ζ1.

We’ve shown already that two of the above degrees are 0, leaving us with

deg(F (ζ, · ), Rζ , 0) = 0 ∀ζ0 < ζ < ζ1,

which contradicts (5.3).

5.5. Uniform regularity along the continuum. One of the possibilities in
Theorem 5.2 is that C δ,+

σ is unbounded in R×Uσ. Since we always have 0 < ζ < αcr,
this is equivalent to |σw|2+β being unbounded along C δ,+

σ . In this section we will
show that, for supercritical solitary waves, |σw|2+β is controlled by |σw|0 and |ws|0,
while |w|2+β is controlled by |ws|0 alone. These estimates will allow us to establish
uniform bounds along the continua C and C δ

σ in sections 5.6 and 5.7, addressing the
possibility in Theorem 5.2 that C δ,+

σ is unbounded.
Proposition 5.12. For each K > 0 there exists a constant C depending only on

K such that all supercritical solitary waves (ζ, w) with |ws|0 ≤ K satisfy |w|2+β ≤ C.
Proposition 5.13. For each K > 0 there exists a constant C depending only

on K and σ such that all supercritical solitary waves (ζ, w) with |ws|0 + |σw|0 ≤ K
satisfy |σw|2+β ≤ C.

We will prove Propositions 5.12 and 5.13 in several steps:
1. Estimate |w|1 in terms of |ws|0.
2. Estimate |w|1+β′ in terms of |w|1 for some β′ ∈ (0, β].
3. Estimate |w|2+β′ in terms of |w|1+β′ .
4. Repeat step 3 with β′ replaced by β.
5. Estimate |σw|2+β in terms of |σw|0 and |w|2+β .

Step 1 follows easily from Proposition 2.4.
Lemma 5.14. Let (ζ, w) be a supercritical solitary wave. Then there exists a

constant C depending only on γ so that |w|1 ≤ C(1 + |ws|0).
Proof. By Proposition 2.4 we have |wx|0 ≤ C(1 + |ws|0), and |w|0 ≤ |ws|0 follows

from writing w(x, s) =
∫ s
0
ws(x, t) dt.

To complete step 2, we use regularity results for two-dimensional nonlinear elliptic
boundary problems. For convenience, set y = (x, s). Fixing R ∈ (0, 1), we work on
half-balls

B−
R = {y ∈ R2 : |y − (x0, 1)| < R, s < 1} ⊂ Ω(5.4)

centered at points (x0, 1) ∈ T . Consider a nonlinear problem

F (y,Dϕ,D2ϕ) = 0 in B−
R , G(ϕ,Dϕ) = 0 on ∂B−

R ∩ T,(5.5)
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and assume that there exist positive constants c1, c2, c3 such that

c1I ≤ Fr(x, p, r) ≤ c2c1I, |Gp(z, p)| ≥ c3(5.6)

for all (x, z, p, r) ∈ B−
R × R × R2 × S2. Here S2 is the space of real symmetric 2 × 2

matrices.
A simplified version of Theorem 1 in [32] then reads as follows.
Theorem 5.15. Fix R ∈ (0, 1) and a Hölder parameter β ∈ (0, 1), and let

F ∈ C0,1(B−
R ×R2×S2) and G ∈ C0(R×R2) satisfy (5.6) for some positive constants

c1, c2, c3. Suppose in addition that there exists a positive constant c4 so that

|F (y, p, 0)| ≤ c4, |Fp(y, p, r)| ≤ c4(1 + |r|), |Fy(y, p, r)| ≤ c4

for all (y, p, r) ∈ B−
R × R2 × S2, and

|G(z, p)−G(z′, p′)| ≤ c4
(|z − z′|β + |p− p′|)

for all (z, p) and (z′, p′) in R×R2. Then for any K > 0, there exist positive constants
β′ and C depending on β,R, c1, c2, c3, c4 so that any solution ϕ ∈ C0,1(B−

R )∩W 3,2
loc (B

−
R )

of (5.5) with sup(|ϕ|+ |Dϕ|) ≤ K obeys

|ϕ|1+β′;B−
R/2

≤ C.(5.7)

So that our formulas for F and G are simpler, we will apply Theorem 5.15 to
equations (1.14a)–(1.14b) for h = H+w and α = αcr−ζ, instead of the corresponding
equations (1.19a)–(1.19b) for w and ζ. Writing (1.14a)–(1.14b) in nondivergence form,
we set

F (s, p, r) = (1 + p21)r22 − 2p1p2r12 + p22r11 + γ(−s)p32,

G(z, p;α) =
1 + p21
2p22

+ α(z − 1)− μ

2
.

We easily check that F and G satisfy the hypotheses of Theorem 5.15 when restricted
to regions of the form |z| + |p| ≤ K and p2 ≥ δ > 0 with constants c1, c2, c3, c4
depending only on K, δ, β (and not on x0). Modifying F and G using cutoff functions,
we conclude that if the ϕ in Theorem 5.15 satisfies ϕs ≥ δ > 0, then the conclusion
(5.7) holds with C and β′ depending only on K, δ, β.

Using Theorem 5.15, we can now complete step 2.
Lemma 5.16. For each K > 0 there exists C = C(K) and β′ = β′(K) ∈ (0, β] so

that any supercritical solitary wave (ζ, w) with |ws|0 < K satisfies |w|1+β′ < C.
Proof. Let (ζ, w) solve (1.19), and for convenience set h = H + w. In what

follows we use C > 0 and β′ ∈ (0, β] to denote constants depending only on K. By
Lemma 5.14 we have |w|1 < C, and hence |h|1 ≤ |H |1+ |w|1 < C. By Proposition 2.4,
we also have infΩ hs ≥ δ∗, where δ∗ > 0 is independent of (ζ, w). Thus θ = h solves
the uniformly elliptic equation

(1 + h2x)θxx − 2hxhsθxs + h2sθxx = −γh3s
in Ω, so by standard elliptic theory [16, Theorem 9.19] h ∈ C3+β(Ω) and hence
h ∈W 3,2

loc (Ω).
Now pick x0 ∈ R and define B−

1 = B−
1 (x0) as in (5.4). Applying Theorem 5.15

to F and G on B−
1 , we see that h satisfies |h|1+β′;B−

1/2
≤ C, where β′ and C depend
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only on K and not on the center x0 of the half-ball B−
1 . We can also make a similar

argument near the bottom boundary s = 0 by setting G(z, p) = p1. Applying these
estimates to each half-ball centered at the boundary, we conclude |h|1+β′;Ω′ ≤ C,

where Ω′ = R × [(0, 14 ) ∪ (34 , 1)]. Combining this with a C1+β′
interior estimate for

quasilinear equations [16, Theorem 13.6], we have |h|1+β′ < C and hence |w|1+β′

< C.
To complete step 3, we differentiate F (ζ, w) = 0 with respect to x and apply an

(unweighted) Schauder-type estimate for divergence form equations.
Lemma 5.17. For each K > 0 and β′ ∈ (0, β] there exists C = C(K,β′) so that

any supercritical solitary wave (ζ, w) with |w|1+β′ < K satisfies |w|2+β′ < C.
Proof. Let (ζ, w) be a supercritical solitary wave with |w|1+β′ < K, and for

convenience set h = H + w. Differentiating F (ζ, w) = 0 with respect to x, we see
that ϕ = wx is a weak (C1+β′

) solution to the divergence form elliptic equation
F1w(ζ, w)ϕ = 0,

∂s

(
1 + w2

x

h3s
∂sϕ− wx

h2s
∂xϕ

)
+ ∂x

(
−wx

h2s
∂sϕ+

1

hs
∂xϕ

)
= 0 in Ω,

1 + w2
x

h3s
∂sϕ+

wx

hs
∂xϕ+ (αcr − ζ)ϕ = 0 on s = 1

(5.8)

with ϕ = 0 on s = 0. Since hs ≥ δ∗ by Proposition 2.4, the linear operator F1w(ζ, w)
is uniformly elliptic. Moreover the coefficients in (5.8) have their Cβ′

(Ω) norms con-
trolled by K, and the boundary operator F2w(ζ, w) is uniformly oblique. Thus the
Schauder-type estimate Lemma A.2 gives |wx|1+β′ ≤ C|wx|0 ≤ C. It remains to
estimate |wss|β′ . Solving F1(ζ, w) = 0 for wss as in the proof of Lemma 4.6, we get

wss =
−h2swxx + 2hswxwxs + γH3

sw
2
x − 3γH2

sws − 3γHsw
2
s − γw3

s

1 + w2
x

,

and hence |w|2+β′ < C.
We can now prove Proposition 5.12 by completing step 4.
Proof of Proposition 5.12. Let (ζ, w) be a supercritical solitary wave with |ws|0 ≤

K. In what follows we denote by C > 0 constants depending only on K. By
Lemma 5.16, we have |w|1+β′ < C, where β′ ∈ (0, β] depends only on K. Apply-
ing Lemma 5.17, we then have |w|2+β′ < C. In particular, this means |w|1+β < C, so
we can apply Lemma 5.17 again to get |w|2+β < C.

Finally, we complete step 5 by writing F (ζ, w) = 0 in nondivergence form and
applying the weighted Schauder estimate Lemma A.9.

Proof of Proposition 5.13. Let (ζ, w) be a supercritical solitary wave satisfying
|σw|0 < K, and for convenience set h = H +w and α = αcr− ζ. By Proposition 5.12,
we have |w|2+β < C(K).

Writing F (ζ, w) = 0 in nondivergence form, we see that ϕ = w solves

(1 + w2
x)ϕss − 2hshxϕxs + h2sϕxx + b1ϕx + b2ϕs = 0 in Ω,

wxϕx − (μws + 2
√
μ)ϕs + cϕ = 0 on s = 1,

(5.9)

together with ϕ = 0 on s = 0, where

b1 = −γH3
swx, b2 = 3γH2

s + 3γHsws + γw2
s , c =

4α√
μ
ws + 2αw2

s +
2α

μ
.
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Since hs ≥ δ∗ by Proposition 2.4, (5.9) is a uniformly elliptic equation for ϕ. On s = 1
we have 0 ≤ Hs +ws = 1/

√
μ+ws, so the coefficient of ϕs in the second line of (5.9)

satisfies

μws + 2
√
μ ≥ −μ/√μ+ 2

√
μ =

√
μ.

Thus the boundary condition in (5.9) is uniformly oblique. Moreover, we can bound
the C1+β(Ω) norms of the coefficients appearing in (5.9) in terms of |w|2+β < K.
Using the weighted Schauder estimate Lemma A.9, we conclude that

|σw|2+β ≤ C1(K,σ)|σw|0 ≤ C2(K,σ).

5.6. Fixing the weight function. This section is devoted to the proof of
Proposition 5.18, which asserts that if a collection W of supercritical waves has |ws|0
uniformly bounded, then there exists a weight function σ so that |σw|2+β is also
uniformly bounded along W . This will allow us to fix σ in section 5.7 and avoid
an alternative in Theorem 1.1 involving the weight function. We will prove Proposi-
tion 5.18 by combining the equidecay result Proposition 2.5, the uniform bounds in
Propositions 5.12 and 5.13, and an elementary fact about monotone functions.

Proposition 5.18. Let W be a family of supercritical solitary waves with
sup(ζ,w)∈W |ws|0 <∞. Then there exists a strictly positive even function σ ∈ C∞(R)

satisfying (3.1) so that

sup
(ζ,w)∈W

|σ(x)w|2+β <∞.

Proof. By Proposition 5.12, we have sup(ζ,w)∈W |w|2+β < ∞. Thus by Proposi-
tion 2.5, W has the equidecay property

lim
x→±∞ sup

(ζ,w)∈W
sup

s∈[0,1]

|w(x, s)| = 0.

In particular, the function

F (x) := sup
(ζ,w)∈W

sup
s∈[0,1]

|w(x, s)|

is even with F (x) → 0 as x→ ±∞. By the monotonicity and elevation of supercritical
solitary waves, Propositions 2.1 and 2.2, f is monotone decreasing for x > 0, and
F (x) > 0 for all x ∈ R.

Our candidate weight function is 1/F (x), which is even, positive, goes to ∞ as
x→ ±∞, and is monotone increasing for x > 0. Assume for the moment that we can
find a smooth function σ ≤ 1/F with the above properties and

lim
x→±∞

Dkσ

σ
= 0 for k ≥ 1.

Then σ is a weight function satisfying the hypotheses of section 3.1, in particular
condition (3.1), as well as

sup
(ζ,w)∈W

|σw|0 ≤ sup
(ζ,w)∈W

|w/F (x)|0 ≤ 1.

Applying Proposition 5.13, we have sup(ζ,w)∈W |σw|2+β < ∞ as desired. Thus the
proof is complete, provided we can construct an appropriate σ in terms of 1/F , which
is the content of Lemma 5.19 below.
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Lemma 5.19. Let f : [0,∞) → (0,∞) be a monotone increasing function with
f(x) → ∞ as x → ∞. Then there exists a smooth, monotone increasing function
g : [0,∞) → (0,∞) with g ≤ f and g(x) → ∞, such that

lim
x→∞

Dkg

g
→ 0, k = 1, 2, 3, . . . .(5.10)

Proof. Define a sequence an inductively by

a0 = f(0), an+1 = min
{
f(n+ 1), (1 + 1

n )an
}
.

We claim that an has the properties

an > 0, an ≤ f(n), an ≤ an+1, an → ∞,
an+1

an
→ 1.

Now an > 0 and an ≤ f(n) are clear from the definition. Combining this with the
monotonicity of f , we easily check that an ≤ an+1. If an+1 = f(n+1) infinitely often,
then the monotonicity of an and f(x) → ∞ imply an → ∞. On the other hand, if
an+1 = (1 + 1/n)an for n ≥ N , then

∏∞
n=1(1 + 1/n) = ∞ also implies an → ∞.

Finally, an ≤ an+1 ≤ (1 + 1/n)an forces an+1/an → 1.
Now we construct g in terms of an. Let ϕ : [0, 1] → [0, 1] be a smooth, monotone

increasing function with ϕ(x) = 0 for x < 1/4 and ϕ(x) = 1 for x > 3/4. Setting
a−1 = a0, we define g piecewise by

g(x) = an−1 + (an − an−1)ϕ(x − n), x ∈ [n, n+ 1].

We easily check that g is smooth and monotone increasing, and also that

an−1 ≤ g(x) ≤ an ≤ f(x), x ∈ [n, n+ 1].

In particular, since an → ∞, we have g → ∞ as x→ ∞. Taking derivatives, we find

Dkg(x) = (an − an−1)D
kϕ(x− n), x ∈ [n, n+ 1],

and hence∣∣∣∣Dkg(x)

g(x)

∣∣∣∣ ≤ an − an−1

an
‖Dkϕ‖L∞ =

(
1− an−1

an

)
‖Dkϕ‖L∞ , x ∈ [n, n+ 1].

Sending n→ ∞ and using an−1/an → 1, we obtain (5.10) as desired.

5.7. Proof of the main theorem. We are now in a position to prove our main
result.

Proof of Theorem 1.3. Let (ζ, w) ∈ C . By Lemma 5.3, w is nontrivial, w �≡ 0.
Thus by Proposition 2.1, we have the elevation condition w(x, 1) > 0 for x ∈ R.
Applying Proposition 2.2 we get the monotonicity condition wx < 0 for x > 0 and
0 < s ≤ 1.

First assume alternative (ii) holds, i.e., there exists a sequence (ζn, wn) ∈ C with
ζn ↗ αcr. We claim that we can extract a subsequence with limn→∞ wn(0, 1) ≥
d∗/d− 1. If not, then

sup
n
wn(0, 1) =M < d∗/d− 1.(5.11)

But then Proposition 2.3 gives αcr − ζn > C > 0 for all n, a contradiction.
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From now on we assume alternative (i) does not hold, i.e., sup(ζ,w)∈C |ws|0 <∞.
Applying Proposition 5.18, there exists a smooth even weight function σ satisfying
(3.1) with

sup
(ζ,w)∈C

|σw|2+β <∞.(5.12)

Let δ ∈ (0, ζ∗). We claim that C δ
σ \ Cloc contains a solution with either ζ = δ

or ζ = αcr − δ. To see this, we first pick (ζ0, w0) ∈ Cloc ∩ C δ
σ . By Theorem 5.2,

C δ
σ \{(ζ0, w0)} has exactly two connected components, Cloc∩{δ ≤ ζ < ζ0} and another

component C δ,+
σ which is either unbounded or meets the boundary of (δ, αcr−δ)×Uσ.

Since 0 < ζ < αcr is always bounded and

sup
(ζ,w)∈C δ,+

σ

|σw|2+β ≤ sup
(ζ,w)∈C

|σw|2+β <∞

by (5.12) and C δ,+
σ ⊂ C (Lemma 5.4), we conclude that C δ,+

σ meets the boundary
of (δ, αcr − δ) × Uσ. By Proposition 2.4, all (ζ, w) ∈ C have hs ≥ δ∗ and hence
w ∈ Uσ. Therefore C δ,+

σ cannot meet [δ, αcr − δ] × ∂Uσ and must instead meet
{δ, αcr−δ}×Uσ. Since Cloc only contains solutions with ζ < ζ∗ < αcr−δ, any solution
(αcr − δ, w) ∈ C δ,+

σ will not lie on Cloc. Similarly, since C δ,+
σ and Cloc ∩ {δ ≤ ζ < ζ0}

are disjoint, any solution (δ, w) ∈ C δ,+
σ will not lie on Cloc. This proves the claim.

Sending δ = 1/n → 0, we have proved the existence of a sequence (ζn, wn) in
C \ Cloc with either ζn ↘ 0 or ζn ↗ αcr. The second possibility is alternative (ii),
which we have already dealt with, so assume that ζn → 0. Because of (5.12), |σwn|2+β

is uniformly bounded, so we can extract a subsequence so that |√σ(wn − w)|2 → 0
for some w ∈ C2+β

σ (Ω). We easily check that (0, w) satisfies (1.19) as well as the weak
monotonicity condition wx ≥ 0 for x > 0. If w ≡ 0, then |wn|2 → 0 as n → ∞, so
by part (iii) of Theorem 4.1, (ζn, wn) lies on Cloc for n sufficiently large. But this
contradicts (ζn, wn) ∈ C \ Cloc. Thus w �≡ 0, so Proposition 2.1 implies the elevation
condition w(x, 1) > 0 for x ∈ R, which is alternative (iii).

This completes the proof of Theorem 1.3, and hence, by Proposition 1.4, of The-
orem 1.1.

Appendix. Elliptic problems in infinite strips. In this appendix we will
prove results about elliptic problems in unbounded domains Ω = Rn × (0, 1) which
are needed in sections 3 and 5. The main difficulty is the unboundedness of domain;
in a bounded domain most of this appendix would either be unnecessary or would
follow directly from standard elliptic theory. Because of this loss of compactness, the
usual proofs of local properness using Schauder estimates no longer work. Recall from
section 3 that we call a nonlinear mapping F : X → Y locally proper if F−1(K) ∩D
is compact whenever K ⊂ Y is compact and D ⊂ X is closed and bounded. We
will prove local properness using ideas from Volpert and Volpert [48], who consider
general elliptic systems in quite general unbounded domains. Our setting is much
simpler, and we will provide much more direct proofs of results in [48] for the reader’s
convenience.

In Appendix A.1, we will use translation invariance to prove a very mild extension
of the usual Schauder estimate, and also state a Schauder-type estimate for divergence
form equations from [10]. In Appendix A.2, we will specialize to equations with a
particular divergence structure, and prove a sufficient condition for invertibility. We
will begin following [48] in Appendix A.3, where we will prove local properness for
elliptic operators. The proof involves the so-called limiting operators obtained by
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sending |x| → ∞ in the coefficients. We will introduce weighted Hölder spaces in
Appendix A.4, and prove weighted versions of the lemmas from Appendices A.1–
A.3. Most of these weighted lemmas will require a subexponential growth assumption
(A.11) on the weight function σ, but Schauder estimates will only require a weaker
condition (A.12). In Appendix A.5, we will prove local properness for nonlinear elliptic
operators in weighted Hölder spaces. The proof will use the weight to control quadratic
terms, essentially reducing the problem to the linear one treated in Appendix A.3.
Finally, in Appendix A.6, we will extend the above results to functions and operators
with a reflection symmetry.

A.1. Schauder estimates. Set Ω = Rn × (0, 1) and let Γ1 = Rn × {1} and
Γ0 = Rn×{0} be the upper and lower boundaries of Ω. In this section we’re interested
in elliptic boundary value problems of the form

Au = f in Ω, Bu = g on Γ1, u = 0 on Γ0,(A.1)

where

Au = aijDiju+ biDiu+ cu, Bu = γiDiu+ αu.(A.2)

Fixing β ∈ (0, 1), we assume the regularity aij , bi, c ∈ Cβ
b (Ω) and α, γi ∈ C1+β

b (Γ1).
We also assume that A is uniformly elliptic and B is uniformly oblique, that is,

aij = aji, aijξiξj ≥ c|ξ|2, |γn+1| ≥ c,(A.3)

for some positive constant c. We are primarily interested in two-dimensional strips
with n = 1, but take n = 2 in the proof of Lemma 3.7. By standard elliptic theory
[1], solutions u ∈ C2+β

b (Ω) of (A.1) satisfy a Schauder estimate

|u|2+β ≤ C(|f |β + |g|1+β + |u|0),(A.4)

where the constant C depends only on the ellipticity and obliqueness constants and
the stated norms of the coefficients. In fact, the requirement u ∈ C2+β

b (Ω) can be
weakened to u ∈ C0

b(Ω) ∩ C2+β(Ω).

Lemma A.1. Suppose that u ∈ C0
b(Ω) ∩ C2+β(Ω) satisfies (A.1) with f ∈ Cβ

b (Ω)

and g ∈ C1+β
b (Ω). Then u ∈ C2+β

b (Ω). In particular, u satisfies the Schauder estimate
(A.4).

Proof. For simplicity, we only give the proof for n = 1. Let x0 ∈ R, and consider
a rectangle R = (x0 − 1, x0 + 1)× (0, 1). We let 2R = (x0 − 2, x0 + 2)× (0, 1) be the
corresponding rectangle with twice the width. Combining Lemmas 6.4 and 6.29 from
[16], we see that

|u|2+β;R ≤ C
(|f |β;2R + |g|k+β;Γ1∩2R + |u|0;2R

)
,(A.5)

where the constant C does not depend on x0. Since |u|2+β ≤ C supR|u|2+β;R, we can
take the supremum of both sides of (A.5) over R and recover (A.4).

For divergence form equations we also have Schauder-type estimates which de-
mand less regularity on the coefficients. Consider the problem

Di(a
ijDju) = 0 in Ω, γiDiu+ αu = 0 on Γ1, u = 0 on Γ0,(A.6)

where aij , γi satisfy the ellipticity and obliqueness condition (A.3).



LARGE-AMPLITUDE SOLITARY WAVES WITH VORTICITY 2987

Lemma A.2. Suppose that aij , γi, α ∈ Cβ
b (Ω) and that u ∈ C1

b(Ω) is a weak

solution of (A.6). Then u has the additional regularity u ∈ C1+β
b (Ω). Moreover

|u|1+β ≤ C|u|0, where the constant C depends only on the dimension, the stated
norms of the coefficients, and the ellipticity and obliqueness constants.

Proof. In a periodic strip this follows from Theorem 3 in [9]. Since this theorem
is based on local estimates, we can extend it to the infinite strip as in the proof of
Lemma A.1.

A.2. Invertibility for divergence form equations. We now set Ω = R ×
(0, 1), and write points in Ω as (x, y). We also specialize to equations with the special
divergence form structure

Di(a
ijDju) = f in Ω, −a2jDju+ αu = g on Γ1, u = 0 on Γ0,(A.7)

where α ∈ R is a parameter and aij ∈ C1+β
b (Ω). Note that the uniform ellipticity of

aij implies the uniform obliqueness of the boundary operator on Γ1. Letting H be
the Hilbert space

H = {u ∈ H1(Ω) : u|Γ0 ≡ 0 in the trace sense},
we call u ∈ H a weak solution of (A.7) if∫∫

Ω

aijDiuDjϕdxdy − α

∫
Γ1

uϕdx = −
∫∫

Ω

fϕ dx+

∫
Γ1

gϕ dx

for all ϕ ∈ H . By the usual Lax–Milgram arguments, (A.7) will have a unique weak
solution for any f ∈ L2(Ω) and g ∈ L2(Γ1) provided that the associated bilinear form
is coercive. For α < 0 this follows from ‖u‖H ≤ C‖Du‖L2, which holds for functions
u ∈ H since they vanish on Γ0. So assume α ≥ 0 and let u ∈ H be smooth. Then

|u(x, 1)|2 =

∣∣∣∣∫ 1

0

D2u(x, y) dy

∣∣∣∣2 ≤
(∫ 1

0

a11

det(aij)
dy

)(∫ 1

0

det(aij)

a11
|D2u|2 dy

)
for each x ∈ R. Assuming that

M := sup
x∈R

∫ 1

0

a11

det(aij)
dy <

1

α
,(A.8)

we then easily check that∫∫
Ω

aijDiuDju dx dy − α

∫
Γ1

u2 dx ≥
∫∫

Ω

(
aijDiuDju− αM

det(aij)

a11
(D2u)

2

)
dx dy

≥ C‖u‖2H.
Thus we have proved the following lemma.

Lemma A.3. If (A.8) holds, then (A.7) has a unique weak solution u ∈ H
whenever f ∈ L2(Ω) and g ∈ L2(Γ1).

By a perturbation argument, we easily obtain the following.
Corollary A.4. Fix α satisfying (A.8). Then there exists ε > 0 so that the

problem

Di(a
ijDju) + biDiu+ cu = f in Ω, −a2jDju+ (α+ γ)u = g on Γ1, u = 0 on Γ0
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has a unique weak solution u ∈ H whenever f ∈ L2(Ω), g ∈ L2(Γ1), and |bi|0, |c|0,
and |γ|1 are all less than ε.

Using Corollary A.4, we can then prove invertibility in Hölder spaces.
Lemma A.5. If α satisfies (A.8), then (A.7) has a unique solution u ∈ C2+β

b (Ω)

for each f ∈ Cβ
b (Ω) and g ∈ C1+β

b (Γ1).
Proof. Fix α satisfying (A.8), and for ε > 0 define ρε(x) = sech εx, uε = ρεu,

fε = ρεf , and gε = ρεg. Then (A.7) is equivalent to

Di(a
ijDjuε) + biεDiuε + cεuε = fε in Ω, −a2jDjuε + (αε + α)uε = gε on Γ1,

(A.9)

together with uε = 0 on Γ0, where

biε = −2Diρε
ρε

aij , cε = −Dijρε
ρε

aij + 2
DiρεDjρε

ρ2ε
aij +

Djρε
ρε

Dia
ij , αε =

Djρε
ρε

a2j .

We observe that |biε|β , |cε|β , |αε|1+β → 0 as ε → 0. Picking 0 < ε < ε0 with ε0
sufficiently small, Corollary A.4 implies that (A.9) has a unique solution uε ∈ H

whenever fε ∈ L2(Ω) and gε ∈ L2(Γ1). Since u ∈ C2+β
b (Ω) implies uε = ρεu ∈ H ,

we have in particular that solutions u ∈ C2+β
b (Ω) of (A.7) are unique. It remains

to show existence. Fix f ∈ Cβ
b (Ω), g ∈ C1+β

b (Γ1), and note that fε ∈ L2(Ω) and
gε ∈ L2(Γ1) for any ε > 0. Therefore there exists a unique weak solution uε ∈ H
of (A.9) for each 0 < ε < ε0. By standard elliptic theory (Theorems 8.8 and 9.19 in

[16]), uε ∈ C2+β(Ω) ∩ Cβ
b (Ω) solves (A.7). Our Schauder estimate Lemma A.1 and

uniqueness then give uε ∈ C2+β
b (Ω) with

|uε|2+β ≤ C(|fε|β + |gε|1+β) ≤ C(|f |β + |g|1+β),

where the constant C is independent of ε ∈ (0, ε0). In the second inequality we’ve used
the fact that |ρε|1+β is uniformly bounded as ε → 0. Thus |uε|2+β is bounded uni-
formly in ε, and we can take a subsequence εn → 0 so that uεn → u in C2

loc(Ω) for some

u ∈ C2+β
b (Ω). Since fε → f in C0

loc(Ω), gε → g in C1
loc(Γ1), and |biε|β , |cε|β, |αε|1+β →

0, we conclude that u solves (A.7).
We note that the condition (A.8) appearing in Lemma A.5 is sharp in the following

sense. Suppose that aij is diagonal and depends only on the vertical variable y. Then

u(y) =
∫ y
0

dy′

a22 has u(0) = 0 and Di(a
ijDju) = 0 in Ω, with a2jDju + αu = 0 if and

only if equality holds in (A.8).
Allowing for complex-valued functions, we obtain a similar result for an eigenvalue

problem.
Lemma A.6. Fix α satisfying (A.8). Then there exists κ0 < 0 so that, for any

κ ∈ C \ (−∞, κ0] and complex-valued f ∈ Cβ
b (Ω), g ∈ C1+β

b (Γ1), the problem

Di(a
ijDju)− κu = f in Ω, −a2jDju+ αu = g on Γ1, u = 0 on Γ0

has a unique (complex-valued) solution u ∈ C2+β
b (Ω).

A.3. Limiting problems and properness. We continue to set Ω = R× (0, 1)
and to write points in Ω as (x, y). Define the Banach spaces

Xb = {u ∈ C2+β
b (Ω) : u|Γ0 ≡ 0}, Yb = Cβ

b (Ω)× Ck+β
b (Γ1).



LARGE-AMPLITUDE SOLITARY WAVES WITH VORTICITY 2989

Letting A,B be as in (A.2), we can think of (A,B) as a bounded linear operator
L = (A,B) : Xb → Yb. In this section we will give sufficient conditions for L to
be locally proper. For linear operators, local properness is equivalent to being semi-
Fredholm with index < +∞, i.e., having a closed range and finite-dimensional kernel.

Suppose that, as x→ ±∞,

aij(x, y) → ãij(y), bi(x, y) → b̃i(y), c(x, y) → c̃(y), α(x) → α̃, γi(x) → γ̃i,

where ãij , b̃i, c̃ ∈ Cβ [0, 1]. For any sequence xn with |xn| → ∞ we can define shifted

coefficients aijn (x, y) = aij(x+ xn, y). Since the aijn are uniformly bounded in Cβ
b (Ω),

we can extract a subsequence so that aijn → ãij in C0
loc(Ω). Analogous statements

hold for the other shifted coefficients bin, cn. Performing these extractions, we define
shifted and limiting operators

Anu = aijnDiju+ binDiu+ cnu, Bnu = αnu+ βi
nDiu, Ln = (An, Bn),

Ãu = ãijDiju+ b̃iDiu+ c̃u, B̃u = α̃u+ γ̃iDiu, L̃ = (Ã, B̃).

Lemma A.7. Assume the homogeneous limiting problem L̃u = 0 has no nontrivial
solutions u �≡ 0 in Xb. Then L : Xb → Yb is locally proper.

Proof. Let un be a bounded sequence in Xb such that Lun → f = (f1, f2) in
Yb. We need to show that un has a subsequence converging in Xb. Extracting a
subsequence, un → u in C2

loc(Ω) with u ∈ C2+β
b (Ω) and Lu = f . By the Schauder

estimate (A.4), it suffices to show un → u in C0
b(Ω). Assume that this is not true.

Since un → u locally, we can extract a subsequence so that

|un(xn, yn)− u(xn, yn)| ≥ δ > 0,

where (xn, yn) ∈ Ω satisfies |xn| → ∞ and yn → y0. Define

vn(x, y) = un(x + xn, y)− u(x+ xn, y).

Extracting another subsequence, we can assume vn → v in C2
loc(Ω), where v ∈

C2+β
b (Ω), and also that Lnvn → L̃v in C0

loc(Ω)× C1
loc(Γ1). Since Lnvn = fn − f → 0

in Yb, we must have L̃v = 0. But

|v(0, y0)| = lim
n→∞|un(xn, y0)− u(xn, y0)| ≥ δ,

so v �≡ 0, a contradiction.

A.4. Weighted Hölder spaces. For unbounded domains Ω the inclusion of
Ck+β

b (Ω) into C�+γ
b (Ω) with � + γ < k + β is no longer compact. As a replacement,

we will use the following elementary lemma.
Lemma A.8. Let Ω ⊂ Rn be an unbounded domain and set ΩR = Ω∩ {|x| > R}.

If a sequence un ∈ Ck+β
b (Ω) has un → u in Ck+β

loc (Ω) and satisfies the equidecay
condition

lim
R→∞

sup
n
|un|k+β;ΩR = 0,(A.10)

then un → u ∈ Ck+β
b (Ω). In particular, suppose that � + γ > k + β and that

un ∈ C�+γ
b (Ω) is a bounded sequence satisfying (A.10). Then un has a subsequence

converging in Ck+β
b (Ω).
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In light of Lemma A.8, it will be convenient to work in function spaces where the
norm controls the rate of decay at infinity. Since products of functions decaying at
a certain rate will decay even faster, these spaces are especially useful for nonlinear
problems.

Let σ : Ω → (0,∞) be a strictly positive smooth function. We define the weighted
Hölder spaces

Ck+β
σ (Ω) = {u ∈ Ck+β(Ω) : |σu|k+β <∞}.

An obvious feature of this definition is that u �→ σu is an isometric isomorphism
Ck+β

σ (Ω) → Ck+β
b (Ω). The weight functions σ we will consider will usually satisfy

lim
|x|→∞

σ = ∞, lim
|x|→∞

Dασ

σ
= 0 for all multi-indices α �= 0.(A.11)

The first part of (A.11) guarantees that Ck+β
σ (Ω) � Ck+β

b (Ω) is a space of functions
vanishing as |x| → ∞. The second part guarantees that σ grows more slowly than
any exponential Cek|x|. Many of the results of this section only require the weaker
hypothesis

sup
x

|Dασ|
σ

<∞ for all multi-indices α �= 0.(A.12)

To understand the role of the assumptions (A.11) and (A.12), consider a bounded lin-

ear operator A : Ck+β
b (Ω) → C�+β

b (Ω). Questions about A as an operator Ck+β
σ (Ω) →

C�+β
σ (Ω) are easily translated into questions about the conjugated operator Aσ(u) =

σA(σ−1u) as a map Ck+β
b (Ω) → C�+β

b (Ω). For the operators A we will now consider,
A−Aσ is bounded when σ satisfies (A.12) and compact when σ satisfies (A.11).

Let Ω = Rn × (0, 1), and L,A,B be as in (A.2). The conjugated operators
Aσ(u) = σA(σ−1u) and Bσu = σB(σ−1u) are given by

Aσu = Au − 2aij
Djσ

σ
Diu−

(
aij

Dijσ

σ
− 2aij

DiσDjσ

σ2
+ bi

Diσ

σ

)
u,

Bσu = Bu − γi
Diσ

σ
u.

(A.13)

Notice that the highest order coefficients of Aσ and Bσ are the same as those for A
and B. Moreover, if (A.12) holds, then the coefficients of Aσ are Cβ

b (Ω) and those of

Bσ are C1+β
b (Γ1). This allows us to easily prove the following lemma.

Lemma A.9. Suppose that aij , bi, c ∈ Cβ
b (Ω) and α, γi ∈ C1+β

b (Γ1), and that

σ satisfies (A.12). If u ∈ C0
σ(Ω) ∩ C2+β(Ω) solves (A.1) with f ∈ Cβ

σ (Ω) and

g ∈ C1+β
σ (Ω), then u ∈ C2+β

σ (Ω) and u satisfies the Schauder estimate

|σu|2+β ≤ C(|σf |β + |σg|1+β + |σu|0),(A.14)

where the constant C depends only on σ, the ellipticity and obliqueness constants, and
the stated norms of the coefficients of A,B.

Proof. Simply apply Lemma A.1 with A,B replaced by Aσ, Bσ and u, f, g replaced
by σf, σg, σu.

Similarly, when (A.11) holds, we can show properness between weighted spaces.
Define

Xσ = {u ∈ C2+β
σ (Ω) : u|Γ0 ≡ 0}, Yσ = Cβ

σ (Ω)× Ck+β
σ (Γ1).(A.15)
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Lemma A.10. Suppose that L : Xb → Yb is semi-Fredholm with index ν < ∞
and that σ satisfies (A.11). Then L is also semi-Fredholm with index ν as a map
Xσ → Yσ.

Proof. Since the Fredholm index of L : Xσ → Yσ is the same as the index of the
conjugated operator Lσ = (Aσ, Bσ) : Xb → Yb, it suffices to show that Lσ −L : Xb →
Yb is compact. Writing (A.13) as

Aσu−Au = biσDiu+ ciσu, Bσu−Bu = ασu,

we note that, thanks to (A.11), the coefficients biσ, cσ, ασ satisfy

|biσ|β;ΩR , |ciσ|β;ΩR , |ασ|1+β;ΩR → 0 as R → ∞,

where ΩR = {(x, y) ∈ Ω : |x| > R}. Applying Lemma A.8, we conclude that L − Lσ

is compact.
Finally, when (A.11) holds, invertibility in unweighted spaces implies invertibility

with weights.
Lemma A.11. Suppose that L : Xb → Yb is invertible and that σ satisfies (A.11).

Then L is also invertible as a map Xσ → Yσ.
Proof. Since L : Xb → Yb is invertible, it is Fredholm with index 0, so by

Lemma A.10, L : Xσ → Yσ is also Fredholm with index 0. It therefore suffices to
show that it has trivial kernel. But Xσ ⊂ X , so the kernel of L : Xσ → Yσ is con-
tained in the kernel of L : Xb → Yb, which is trivial.

A.5. Properness of nonlinear elliptic operators. In this section we will
prove local properness for nonlinear elliptic operators in weighted Hölder spaces. Un-
like in Appendices A.1–A.3, the weight function σ will play a central role in the ar-
gument. We note that sections 2.4 and 3.6 of Chapter 11 in [47] give an example of a
nonlinear elliptic operator between unweighted spaces which fails to be locally proper
even though its linearized operators are. There are approaches to local properness
in unbounded domains that do not involve weights, see [40], but they do not apply
directly to our problem because of its fully nonlinear boundary condition.

Let Ω = R×(0, 1), and fix a weight function σ satisfying (A.11). Defining Xσ and
Yσ as in (A.15), let D ⊂ Xσ be a closed, convex set. We require D to be the closure
of some open subset of Xσ. We also assume that D has the following property: if
un is a sequence in D with un → u in C2

loc(Ω), then u ∈ D . This condition is easily
verified for domains D defined by pointwise inequalities.

Define a C2 nonlinear mapping F : D → Yσ by

F1(u)(z) = F1(z, u,Du,D
2u), F2(u)(z) = F2(z, u,Du).

We write F1 = F1(z, η) and F2 = F2(z, ζ), where η ∈ R×R2 ×R2×2 and ζ ∈ R×R2.
We suppose that F1 is smooth in η and Hölder continuous in z with uniform bounds

sup
|η|≤M

max
|β|≤2

‖Dβ
ηF1( · , η)‖Cβ(Ω) <∞, sup

z∈Ω
max
|β|≤2

‖Dβ
ηF1(z, · )‖C0,1({|η|<M}) <∞

for any M > 0. Similarly we suppose that F2 is smooth in ζ and Hölder continuous
in z with

sup
|ζ|≤M

max
|β|≤2

‖Dβ
ζ F2( · , ζ)‖Cα(Γ1) <∞, sup

z∈Γ1

max
|β|≤2

‖Dβ
ζ F2(z, · )‖C0,1({|ζ|<M}) <∞.
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Finally, we assume that the Fréchet derivative Fu(u) : Xσ → Yσ is locally proper
for each u ∈ D . Note that if Fu(0) has a limiting problem, then this will also be a
limiting problem for Fu(u) whenever u ∈ Xσ.

Lemma A.12. Under the above assumptions, F : D → Yσ is proper.
Proof. By intersecting D with a closed ball in Xσ, it suffices to consider the case

where D is bounded. Let un be a sequence in D with F (un) → f = (f1, f2) in Yσ.
We need to show that un has a convergent subsequence. As usual, we can extract
a subsequence so that un → u in C2

loc(Ω), where u ∈ Xσ. By our hypothesis on D ,
u ∈ D and F (u) = f . Taylor expanding in u, we write

Fu(u)[un − u] = F (un)− F (u) + R(u, un),

where we think of R(u, un) as a remainder term. By the local properness of Fu(u), it is
enough to show R(u, un) → 0 in Yσ. Let v = (u,Du,D2u) and vn = (un, Dun, D

2un).
Then

R1(u, un)(z) =

∫ 1

0

(1− s)F1vv(z, v + s(vn − v))(vn − v, vn − v) ds

=: R1n(z)(vn − v, vn − v),

where R1n(z) is a quadratic form. By our assumptions on F1 and the boundedness

of D , the coefficients of R1n are bounded in Cβ
b (Ω), uniformly in n. Thus, for any

U ⊂ Ω,

|σR1(v, vn)|β;U ≤ C|σ−1|β;U |σvn − σv|β;U |σvn − σv|0;U ≤ C|σ−1|β;U |σvn − σv|0;U ,
(A.16)

where C is independent of U . Since vn → v0 in C0
loc(Ω), (A.16) gives σR1(v, vn) → 0

in Cβ
loc(Ω). On the other hand, setting Ωr = {(x, y) ∈ Ω : |x| > r}, (A.16) gives

|σR1(v, vn)|β;Ωr ≤ C|σ−1|β;Ωr → 0 as r → 0, uniformly in n. Thus Lemma A.8
implies |σR1(v, vn)|β → 0. Arguing similarly for R2 we find R(u, un) → 0 in Yσ as
desired.

This result is easily extended to the case where F depends smoothly on a pa-
rameter λ ∈ [0, 1], provided the bounds on F1, F2 and their derivatives are satisfied
uniformly in λ.

A.6. Problems with symmetry. Let Xb, Xσ, Yb, Yσ and L = (A,B) be as in
Appendices A.1 and A.4, and define

Ru(x1, x2, . . . , xn, y) = u(−x1, x2, . . . , xn, y).

Assume that σ,A,B have the symmetry Rσ = σ, ARu = RAu, and BRu = RBu,
and set Xe

b = {u ∈ X : Ru = u} and so on. The following lemma is straightforward.
Lemma A.13. Under the above assumptions, the results in Appendices A.1, A.2,

A.4, and A.5 remain valid if we replace Xb by Xe
b, Yσ by Y e

σ , and so on. As for

Lemma A.7, suppose that the homogeneous limiting problem L̃u = 0 has no nontrivial
solutions u �≡ 0 in Xb. Then Le : Xe

b → Y e
b is locally proper.
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[29] J. P. Krasovskĭı, On the theory of steady-state waves of finite amplitude, Ž. Vyčisl. Mat. i
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