Skip to main content Contents Index
Prev Up Next \(\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\st}{\text{ s.t. }}
\newcommand{\anda}{\text{ and }}
\newcommand{\set}[2]{\left\{ #1 : #2 \right\}}
\newcommand{\seq}[2]{(#1_{#2})_{#2\in\N}}
\newcommand{\subseq}[3]{(#1_{#2_{#3}})_{#3\in\N}}
\newcommand{\subsubseq}[4]{(#1_{#2_{#3_{#4}}})_{#4\in\N}}
\newcommand{\scp}[2]{\left\langle #1, #2 \right\rangle}
\newcommand{\blank}{{\mkern 2mu\cdot\mkern 2mu}}
\newcommand{\without}{\setminus}
\newcommand{\maps}{\colon}
\newcommand{\n}[2][]{#1\lVert #2 #1\rVert}
\newcommand{\abs}[2][]{#1\lvert #2 #1\rvert}
\newcommand{\BV}{\mathrm{BV}}
\newcommand{\bdd}{\mathrm{b}}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\diam}{diam}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 5 Uniform Approximation
Consider the following uniform approximation problem for continuous functions. Suppose that \(a, b \in \R\) with \(a \lt b\text{.}\) Given a function \(f \in C^0([a,b])\text{,}\) is it possible to approximate \(f\) by ‘nice’ functions, say, by polynomials with real coefficients? If so, we may be able to prove certain statements about continuous functions by considering just polynomials.