Skip to main content Contents Index
Prev Up Next \(\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\st}{\text{ s.t. }}
\newcommand{\anda}{\text{ and }}
\newcommand{\set}[2]{\left\{ #1 : #2 \right\}}
\newcommand{\seq}[2]{(#1_{#2})_{#2\in\N}}
\newcommand{\subseq}[3]{(#1_{#2_{#3}})_{#3\in\N}}
\newcommand{\subsubseq}[4]{(#1_{#2_{#3_{#4}}})_{#4\in\N}}
\newcommand{\scp}[2]{\left\langle #1, #2 \right\rangle}
\newcommand{\blank}{{\mkern 2mu\cdot\mkern 2mu}}
\newcommand{\without}{\setminus}
\newcommand{\maps}{\colon}
\newcommand{\n}[2][]{#1\lVert #2 #1\rVert}
\newcommand{\abs}[2][]{#1\lvert #2 #1\rvert}
\newcommand{\BV}{\mathrm{BV}}
\newcommand{\bdd}{\mathrm{b}}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\diam}{diam}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 6 The Baire Category Theorem
In this chapter we prove an important theorem, the Baire category theorem, relating to complete metric spaces. This theorem underpins three of the cornerstones of functional analysis: the uniform boundedness principle, the open mapping theorem, and the closed graph theorem.