\(\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand\maps\colon
\newcommand\by\times
\newcommand{\anda}{\text{ and }}
\newcommand{\ifa}{\text{ if }}
\newcommand{\st}{\text{ s.t. }}
\newcommand{\asa}{\text{ as }}
\newcommand{\ina}{\text{ in }}
\newcommand{\ona}{\text{ on }}
\newcommand{\ata}{\text{ at }}
\newcommand{\wherea}{\text{ where }}
\newcommand{\witha}{\text{ with }}
\newcommand{\fora}{\text{ for }}
\newcommand{\ora}{\text{ or }}
\newcommand{\abs}[2][]{#1\lvert #2 #1\rvert}
\newcommand{\n}[2][]{#1\lVert #2 #1\rVert}
\newcommand{\supp}{\operatorname{supp}}
\newcommand{\dist}{\operatorname{dist}}
\newcommand{\trace}{\operatorname{trace}}
\newcommand{\without}{\setminus}
\newcommand{\dashint}{\hbox{\(-\)}\mspace{-19.25mu}\int}
\newcommand{\tdashint}{\raise 0.3ex \hbox{\(\scriptstyle-\)}\mspace{-14mu}\int}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter3Maximum principles for elliptic equations
Armed with the notation and results from Chapter 2, we now seek to generalise the maximum principles in Section 1.1 to elliptic partial differential equations. These results will then serve as our basic tools in the Chapter 4 and Chapter 5.