Skip to main content

Section 2.6 Symmetric matrices

For \(C^2\) functions \(f\text{,}\) the equality of mixed partials \(\partial_i \partial_j f = \partial_j \partial_i f\) means that the Hessian matrix \(D^2 f\) introduced in Notation 2.10 is symmetric. In this section we recall some relevant results from Linear Algebra (Algebra 2A) and prove a corollary which we will need later.

Definition 2.27. Orthogonality.

  1. We denote the standard inner product between vectors in \(\R^N\) by
    \begin{equation*} \langle x,y\rangle = x \cdot y = x^\top y = x_i y_i\text{.} \end{equation*}
  2. An orthonormal basis of \(\R^N\) is a basis \(\{q_1,\ldots,q_N\}\) with \(\langle q_i,q_j\rangle = \delta_{ij}\text{.}\)
  3. An orthogonal matrix is a matrix \(U \in \R^{N \times N}\) whose columns form an orthonormal basis. Equivalently, \(U^{-1} = U^\top\text{.}\)

Proof.

Applying Theorem 2.28, let \(q_1,\ldots,q_N\) be an orthonormal basis associated to the eigenvalues \(\lambda_1,\ldots,\lambda_N\) of \(A\text{.}\) Then any \(\xi \in \R^N\) can be written as \(\alpha_i q_i\) for \(\alpha \in \R^N\text{,}\) and moreover \(\abs \xi = \abs \alpha\text{.}\) We calculate
\begin{align*} \langle A\xi,\xi\rangle \amp = \langle A(\alpha_i q_i),\alpha_j q_j\rangle \\ \amp = \langle\alpha_i \lambda_i q_i,\alpha_j q_j\rangle \\ \amp = \lambda_i \alpha_i \alpha_j \langle q_i,q_j\rangle \\ \amp = \lambda_i \alpha_i \alpha_j \delta_{ij}\\ \amp = \lambda_i \alpha_i \alpha_i\text{.} \end{align*}
Applying the inequalities \(\lambda_{\min} \le \lambda_i \le \lambda_{\max}\text{,}\) we immediately obtain (2.4). The final statement of the lemma then follows by letting \(\xi\) be the eigenvector associated to \(\lambda_{\min}\) or \(\lambda_{\max}\text{.}\)

Definition 2.30. Definite and semi-definite.

Let \(A \in \R^{N \times N}\) be symmetric. We call \(A\)
  1. positive definite if all its eigenvalues are \(\gt0\text{,}\)
  2. negative definite if all its eigenvalues are \(\lt0\text{,}\)
  3. positive semi-definite if all its eigenvalues are \(\ge0\text{,}\)
  4. negative semi-definite if all its eigenvalues are \(\le0\text{,}\)
  5. and indefinite if it has both positive and negative eigenvalues.

Proof.

Applying Theorem 2.28 to \(A\) and \(B\text{,}\) we can write \(A=U\Lambda U^\top\) and \(B=VMV^\top\) where where \(U,V\) are orthogonal and \(\Lambda = \operatorname{diag}(\lambda_1,\ldots,\lambda_N)\) and \(M = \operatorname{diag}(\mu_1,\ldots,\mu_N)\) are diagonal matrices whose diagonal entries are the eigenvalues of \(A\) and \(B\text{.}\) In index notation, we calculate
\begin{equation*} A_{ij} = (U\Lambda U^\top)_{ij} = U_{ik} \Lambda_{k\ell} U^\top_{\ell j} = U_{ik} \lambda_k \delta_{k\ell} U_{ j\ell} = \lambda_k U_{jk} U_{ik} \end{equation*}
and similarly \(B_{ij} = \mu_\ell V_{j\ell} V_{i\ell}\text{.}\) Multiplying these formulas and grouping terms, we find
\begin{align*} A_{ij} B_{ij} \amp = \lambda_k \mu_\ell U_{jk} V_{j\ell} U_{ik} V_{i\ell}\\ \amp = \lambda_k \mu_\ell (U_{kj}^\top V_{j\ell}) (U_{ki}^\top V_{i\ell})\\ \amp = \lambda_k \mu_\ell (U^\top V)_{k\ell} (U^\top V)_{k\ell}\\ \amp = \lambda_k \mu_\ell \big((U^\top V)_{k\ell}\big)^2 \ge 0, \end{align*}
where in the last step we have used the non-negativity of the eigenvalues \(\lambda_k\) and \(\mu_\ell\text{.}\)

Exercises Exercises

1. Lemma 2.31 for positive definite matrices.

(a)
Find two positive semi-definite matrices \(A,B \in \R^{2\times2}\) for which \(A_{ij}B_{ij} = 0\text{.}\)
(b)
If \(A,B \in \R^{N\times N}\) are positive definite symmetric matrices, show the strict inequality \(A_{ij}B_{ij} \gt 0\text{.}\)
Hint.
Following the proof of Lemma 2.31, we can write \(A_{ij} B_{ij} = \lambda_k \mu_\ell (U^\top V)_{k\ell}^2 \ge 0\text{.}\) What would have to happen in order for the double sum on the right hand side to be exactly zero?

2. (PS3) Invariance of the Laplacian.

Let \(A \in \R^{N \times N}\) be an orthogonal matrix and \(u \in C^2(\R^N)\text{,}\) and define \(v \in C^2(\R^N)\) by
\begin{equation*} v(x) = u(Ax). \end{equation*}
By repeatedly using the chain rule, show that
\begin{equation*} \Delta v(x) = \Delta u(Ax). \end{equation*}
In other words, \(\Delta (u \circ A) = \Delta u \circ A\text{.}\) We say that the Laplacian \(\Delta\) is invariant under orthogonal transformations.
Hint 1.
Since \(A\) is orthogonal, \(AA^\top\) is the identity matrix, i.e. \(A_{ik} A_{jk} = \delta_{ij}\text{.}\)
Hint 2.
Solution.
As always, we use the convention in Notation 2.14. Repeatedly using both the chain rule and the second part of Exercise 2.2.1, we calculate
\begin{align*} \Delta v \amp = \partial_i \partial_i [u(Ax)]\\ \amp = \partial_i[ \partial_j u(Ax)\partial_i (Ax)_j ]\\ \amp = \partial_i[ \partial_j u(Ax) A_{ji} ]\\ \amp = \partial_{kj} u(Ax) A_{ji} \partial_i(Ax)_k\\ \amp = \partial_{kj} u(Ax) A_{ji} A_{ki}\\ \amp = \partial_{kj}u(Ax) \delta_{jk}\\ \amp = \partial_{jj}u(Ax)\\ \amp = \Delta u(Ax)\text{,} \end{align*}
where towards the end we have used the identity
\begin{equation*} A_{ji}A_{ki} = (AA^\top)_{jk} = \delta_{jk}\text{,} \end{equation*}
which holds since \(A\) is orthogonal.

3. The Laplacian and positive definiteness.

Let \(A,B \in \R^{N \times N}\) with \(A\) positive definite and \(B\) invertible, and set \(y=Bx\text{.}\)
(a)
By using the chain rule, show that \(\partial_{x_i} = B_{ki} \partial_{y_k}\) and \(\partial_{x_i} \partial_{x_j} = B_{ki} B_{\ell j} \partial_{y_k} \partial_{y_\ell}\text{.}\)
(b)
Use Theorem 2.28 to find an invertible matrix \(B\) such that \(BAB^\top = I\) is the identity matrix.
(c)
Deduce that, with this choice of \(B\text{,}\)
\begin{equation*} A_{ij} \partial_{x_i} \partial_{x_j} = \partial_{y_k} \partial_{y_k} = \Delta_y\text{.} \end{equation*}
In other words, in the \(y\) variables the operator \(A_{ij} \partial_{ij}\) becomes the Laplacian.