Skip to main content

Appendix J Notation

Symbol Description Location
\(\delta_{ij}\) Kronecker delta Notation 2.1
\(e_i\) canonical basis vector Notation 2.1
\(\langle x,y\rangle\) dot product (inner product) Example 2.3
\(x \cdot y\) dot product (inner product) Example 2.3
\(\abs x\) norm of a vector Definition 2.5
\(\abs A\) norm of a matrix Definition 2.5
\(\abs\alpha\) order of a multiindex Definition 2.7
\(\Omega\) non-empty open subset of \(\R^N\) Notation 2.8
\(\partial_j f\) \(\partial f/\partial x_j\) Notation 2.9
\(\nabla f\) gradient of a function Notation 2.9
\(DF\) Jacobian matrix of a (vector-valued) function Notation 2.9
\(\nabla\cdot F\) divergence of a vector field Notation 2.9
\(\partial_{ij} f\) \(\partial_i \partial_j f\) Notation 2.10
\(D^2 f\) Hessian of a function Notation 2.10
\(\Delta f\) Laplacian of a function Notation 2.10
\(\partial^\alpha\) \(\partial_1^{\alpha_1} \cdots \partial_N^{\alpha_N}\) Notation 2.11
\(C^0(A)\) continuous functions \(A \to \R\) Notation 2.19
\(C^k(\Omega)\) \(C^k\) functions \(\Omega \to \R\) Notation 2.19
\(C^k(\overline \Omega)\) partials extend to elements of \(C^0(\overline\Omega)\) Notation 2.19
\(\n f_{C^k(\Omega)}\) \(C^k\) norm of a function Notation 2.19
\(C^\infty(\Omega)\) \(\bigcap_{k \in \N} C^k(\Omega)\) Notation 2.19
\(C^\infty(\overline \Omega)\) \(\bigcap_{k \in \N} C^k(\overline \Omega)\) Notation 2.19
\(B_r(x_0)\) open ball with radius \(r\) and centre \(x_0\) Definition 2.23
\(B\) some open ball Definition 2.23
\(\partial\Omega\) boundary of a set Definition 2.24
\(\max_A f\) maximum of a function over a set Definition 2.32
\(\min_A f\) minimum of a function over a set Definition 2.32
\(\inf_A f\) infimum of a function over a set Definition 2.33
\(\sup_A f\) supremum of a function over a set Definition 2.33
\(n\) unit normal vector Definition 2.47
\(\frac{\partial u}{\partial n}\) normal derivative \(n \cdot \nabla u\) Definition 2.47
\(L\) an elliptic operator \(a_{ij} \partial_{ij} + b_i \partial_i + c\) Section 3.1
\(a_{ij},b_i,c\) coefficients of an elliptic operator \(L\) Section 3.1
\(\lambda_0\) ellipticity constant Definition 3.1
\(\tdashint\) average Notation 4.9
\(\abs B\) volume of a ball Notation 4.9
\(\abs{\partial B}\) surface area of a sphere Notation 4.9
\(T_\lambda(e)\) hyperplane \(\{ \xi : \xi\cdot e = \lambda \}\) Definition 5.2
\(x^{\lambda,e}\) reflection of \(x\) through \(T_\lambda(e)\) Definition 5.2
\(T_\lambda\) shorthand for \(T_\lambda(e_1)\) Notation 5.5
\(\Sigma(\lambda)\) \(B \cap \{x_1 \gt \lambda\}\) Notation 5.5
\(x^\lambda\) shorthand for \(x^{\lambda,e_1}\) Notation 5.5
\(u^\lambda\) reflected function \(u^\lambda(x)=u(x^\lambda)\) Notation 5.5
\(D\) parabolic interior Paragraph
\(Q\) usual interior Paragraph
\(\Sigma\) parabolic boundary Paragraph
\(L\) a parabolic operator \(-\partial_t + a_{ij} \partial_{ij} + b_i \partial_i + c\) Paragraph
\(\mathcal S(u)\) a semilinear parabolic operator Paragraph