First consider the case where \(B_R(0) \subset \R^N\) and \(x^* = Re_N\text{.}\) We can now parametrise \(\partial B\) near \(x^*\) using
\begin{equation*}
x = \phi(x_1,\ldots,x_{N-1}) = \Big(x_1,\ldots,x_{N-1},\sqrt{R^2-x_1^2-\cdots-x_{N-1}^2}\Big)\text{.}
\end{equation*}
At \(x_1=\cdots=x_{N-1}=0\text{,}\) we calculate
\begin{align*}
\partial_i \phi_k \amp=
\begin{cases}
1 \amp i=k \lt N \\
0 \amp \text{otherwise}
\end{cases},
\\
\partial_{ij} \phi_k \amp=
\begin{cases}
-R^{-1} \amp i=j \lt N \text{ and } k=N \\
0 \amp \text{otherwise}
\end{cases}\text{.}
\end{align*}
If \(u \in C^2(\overline B)\) satisfies \(u=0\) on \(\partial B\text{,}\) \(u \gt
0\) in \(B\text{,}\) and \(\partial_N u = 0\) at \(x^*\text{,}\) calculations similar to those in the previous two parts then yield \(\nabla u(x^*) = 0\) and \(\partial_{ij} u(x^*) = 0\) unless \(i=j=N\text{,}\) i.e.
\begin{equation*}
\partial_{ij} u(x^*) = \delta_{iN} \delta_{jN} \partial_{NN} u(x^*) \text{.}
\end{equation*}
Now consider a general \(x^* \in \partial B\text{,}\) let \(A \in \R^{N \times N}\) be an orthogonal matrix with \(x^* = A(Re_N)\text{,}\) and define a function \(v \in C^2(\overline B)\) by \(v(x)=u(Ax)\text{.}\) Assuming that \(u=0\) on \(\partial B\text{,}\) \(u \gt 0\) in \(B\text{,}\) and \(\nabla u =
0\) at \(x^*\text{,}\) we can apply the above argument to \(v\) to get
\begin{equation*}
\partial_{ij} v(Re_N) = \delta_{iN} \delta_{jN} \partial_{NN} v(Re_N) \text{.}
\end{equation*}
Differentiating
\(u(x)=v(A^{-1}x)\) twice as in
Exercise 2.6.2, we find that
\begin{align*}
\partial_{ij} u(x^*)
\amp
= A_{ki}^{-1} A_{\ell j}^{-1} \partial_{k\ell} v(Re_N)\\
\amp
=
A_{ki}^{-1} A_{\ell j}^{-1}
\delta_{kN} \delta_{\ell N} \partial_{NN} v(Re_N) \\
\amp
=
A_{Ni}^{-1} A_{Nj}^{-1}
\partial_{NN} v(Re_N) \\
\amp
=
A_{iN} A_{jN}
\partial_{NN} v(Re_N) \\
\amp
=
\frac{x^*_i x^*_j}{R^2}
\partial_{NN} v(Re_N) \text{,}
\end{align*}
which is of the desired form in
(5.8).